
Unit Testing
Laboratory
CSCE 747 - Lecture 18 - 03/17/2016

Today’s Class

● We’ve covered many testing techniques.
● We’ve covered the basics of writing

executable test cases.
● Today - we put those lessons into practice.

○ We will work together to test a sample system.

Gregory Gay CSCE 747 - Spring 2016 2

Enter… The Planning System

● Everybody likes
meetings.
○ Not true - but we

need to book them.
● We don’t want to

double-book rooms
or employees for
meetings.

● System to manage
schedules and
meetings.

Gregory Gay CSCE 747 - Spring 2016 3

The Planning System

Offers the following high-level features:
1. Booking a meeting
2. Booking vacation time
3. Checking availability for a room
4. Checking availability for a person
5. Printing the agenda for a room
6. Printing the agenda for a person

Gregory Gay CSCE 747 - Spring 2016 4

Your Task

In groups, come up with a test plan for this
system.
● Given the above features and the code

documentation, plan out a series of test
cases to ensure that these features can be
performed without error.

Gregory Gay CSCE 747 - Spring 2016 5

Food for Thought

● What are the “testable units”?
○ Your tests may use any of the classes in the system,

and may be at the method, class, or system level.
● Think about both normal execution and

illegal inputs/actions.
○ How many things can go wrong?
○ You will probably be able to add a normal meeting,

but can you add a meeting for February 35th?
○ Try it out - you have the code.

Gregory Gay CSCE 747 - Spring 2016 6

Unit Testing

Writing a Unit Test

JUnit is a Java-based toolkit
for writing executable tests.
● Choose a target from

the code base.
● Write a “testing class”

containing a series of
unit tests centered
around testing that
target.

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

Gregory Gay CSCE 747 - Spring 2016 8

Writing a Unit Test

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

import static org.junit.Assert.

assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 public void evaluatesExpression() {

 Calculator calculator =

new Calculator();

 int sum =

calculator.evaluate("1+2+3");

 assertEquals(6, sum);

calculator = null;

 }

}

Gregory Gay CSCE 747 - Spring 2016 9

Convention - name the test class
after the class it is testing or the
functionality being tested.

Each test is denoted with keyword
@test.

Initialization

Test Steps

Input

Oracle

Tear Down

Test Fixtures - Shared Initialization

@Before annotation defines a common test
initialization method:

@Before

public void setUp() throws Exception

{

this.registration = new Registration();

this.registration.setUser(“ggay”);

}

Gregory Gay CSCE 747 - Spring 2016 10

Test Fixtures - Teardown Method

@After annotation defines a common test tear
down method:

@After

public void tearDown() throws Exception

{

this.registration.logout();

this.registration = null;

}

Gregory Gay CSCE 747 - Spring 2016 11

Test Skeleton

@Test annotation defines a single test:

@Test

public void test<MethodName><TestingContext>() {

//Define Inputs

try{ //Try to get output.

}catch(Exception error){

fail("Why did it fail?");

}

//Compare expected and actual values through
assertions or through if statements/fails

}

Gregory Gay CSCE 747 - Spring 2016 12

Assertions

Assertions are a "language" of testing -
constraints that you place on the output.

● assertEquals, assertArrayEquals
● assertFalse, assertTrue
● assertNull, assertNotNull
● assertSame,assertNotSame
● assertThat

Gregory Gay CSCE 747 - Spring 2016 13

Testing Exceptions

● When testing error handling, we expect
exceptions to be thrown.

● In JUnit, we can ensure that the right
exception is thrown.

@Test(expected = IndexOutOfBoundsException.class)

public void empty() {

 new ArrayList<Object>().get(0);

}

Gregory Gay CSCE 747 - Spring 2016 14

Your Task

● Translate planned tests into executable jUnit
tests.
○ If a test is supposed to cause an exception to be

thrown. Make sure you check for that exception.
○ Make sure that your expected output is detailed

enough to ensure that - if something is supposed to
fail - that it fails for the correct reasons.

Gregory Gay CSCE 747 - Spring 2016 15

Finding Faults

Did You Find the Faults?

1: getMeeting and removeMeeting perform no
error checking on dates.

public Meeting getMeeting(int month, int day, int index){

return occupied.get(month).get(day).get(index);

}

public void removeMeeting(int month, int day, int index){

occupied.get(month).get(day).remove(index);

}

Gregory Gay CSCE 747 - Spring 2016 17

Did You Find the Faults?

2: Calendar has a 13th month.
public Calendar(){

occupied = new

ArrayList<ArrayList<ArrayList<Meeting>>>();

for(int i=0;i<=13;i++){

// Initialize month

occupied.add(new ArrayList<ArrayList<Meeting>>());

for(int j=0;j<32;j++){

// Initialize days

occupied.get(i).add(new ArrayList<Meeting>());

}

}

Gregory Gay CSCE 747 - Spring 2016 18

Did You Find the Faults?

3: November has 30 days.
Oh - and we just added a meeting to a day with a date that
does not match that date.

occupied.get(11).get(30).add(new Meeting(11,31,"Day does not

exist"));

Gregory Gay CSCE 747 - Spring 2016 19

Did You Find the Faults?

4: Used a >= in checking for illegal times.
December no longer exists.
if(mMonth < 1 || mMonth >= 12){

throw new TimeConflictException("Month does not

exist.");

}

Gregory Gay CSCE 747 - Spring 2016 20

Did You Find the Faults?

5: We should be able to start and end a
meeting in the same hour.
if(mStart >= mEnd){

throw new TimeConflictException("Meeting starts before it

ends.");

}

Gregory Gay CSCE 747 - Spring 2016 21

What Other Faults Did You
Find?

Code Coverage

● What level of coverage did our tests achieve
over the system?

● How can we cover the gaps?

Gregory Gay CSCE 747 - Spring 2016 23

Next Time

● Fault-Based Testing
○ Using ideas about what could go wrong to guide

testing.
○ Related reading - Chapter 16

● Homework 3 - due tonight.
● Reading assignment 4 - due next week.

Gregory Gay CSCE 747 - Spring 2016 24

