
Automated Test Case
Generation:
Metaheuristic Search

CSCE 747 - Lecture 21 - 03/29/2016

Testing as a Search Problem

● Do you have a goal in mind when testing?
● Can that goal be measured?
● Then you are searching for a test suite that

achieves that goal.
○ Out of the near-infinite set of inputs, I would like a

set of inputs that…
■ obey those properties.
■ cover all branches.
■ try all 2-way pairs of representative values.
■ (etc)

Gregory Gay CSCE 747 - Spring 2016 2

Testing as a Search Problem

● “I want to find all faults” cannot be checked.
● However, almost all testing goals can.

○ Boolean: Property Satisfied/Not Satisfied
○ Numeric: % Coverage Obtained

● If we can take a candidate solution and
check whether it meets our goal, then
computers can search for a solution.

● Many search techniques for automated test
case generation.

Gregory Gay CSCE 747 - Spring 2016 3

Search Process

● Choose a solution. If it does not accomplish
the goal, try another.

● Keep trying new solutions until goal is
achieved or all solutions are tried.

● The order that solutions are tried is key to
efficiently finding a solution.

● A search follows some defined strategy.
○ Called a “heuristic”.
○ Heuristics are used to choose solutions and to

ignore solutions known to be unviable.

Gregory Gay CSCE 747 - Spring 2016 5

Search Budget

● Exhaustive Search - try all solutions.
● Most software has near-infinite number of

inputs. We generally cannot try all solutions
without constraining the problem.

● Search can be bound by a search budget.
○ Number of attempts made.
○ Time allotted to the search.

● Optimization problem:
○ Search for the best solution possible given the

search budget.

Gregory Gay CSCE 747 - Spring 2016 5

Search Heuristics

● Simple strategy: randomly generate input.
○ Fast, easy to understand, very bad at finding faults.

● Adaptive random testing applies strategies
to control the distribution of random test
generation.
○ Retains benefits of RT, more likely to find faults.

● Dynamic symbolic execution extracts logical
expressions describing program paths, and
generates input from those expressions.

Gregory Gay CSCE 747 - Spring 2016 6

Search Heuristics

Gregory Gay CSCE 747 - Spring 2016 7

Highly
Applicable,
Low
Chance of
Efficacy

Less
Applicable,
High
Chance of
Efficacy

RT

● Random Testing:
○ Very fast, easy to implement, requires no information about the

system.
○ Unlikely to satisfy goals.

ART

● Adaptive Random Testing:
○ Almost as efficient as RT, same other benefits, far more likely

to satisfy goals. Still based on random chance.
● (Dynamic) Symbolic Execution:

○ Will find an exact solution if possible.
○ Many restrictions on complexity and data structures of the

programs supported.

 SEDSE

Optimization Problem

● Often too many restrictions to make
exhaustive search feasible.

● No way to try all inputs or abstract complex
systems. Instead, need a strategy to sample
from the input space.
○ But not in a purely random manner.

● How can we find the best solution possible
given a limited search budget?
○ Can apply optimization algorithms.
○ Called metaheuristic search techniques.

Gregory Gay CSCE 747 - Spring 2016 8

Metaheuristic Search

Optimization Problem

● If we can calculate a score related to
attainment of a testing goal, then we have an
optimization target.

● Test generation as an optimization problem:
○ Generate a test (or set of tests).
○ Score each of them using a fitness function.
○ Manipulate the solution according to a search

strategy (the “metaheuristic”).

Gregory Gay CSCE 747 - Spring 2016 10

Metaheuristic Search

● Choose a smart strategy to sample from the
search space.
○ Not purely random - fitness function guides the

search towards better solutions.
○ The metaheuristic changes its approach based on

past attempts.
● No guarantee of an optimal solution…

○ … but if we’re smart, we’ll hit something close
enough.

● Computationally feasible, and often more
effective than random search.

Gregory Gay CSCE 747 - Spring 2016 11

Local Search

● Generate a potential solution.
● Score it using your fitness function.
● Attempt to improve it by looking at its local

neighborhood.
○ Test cases minorly different from the current choice.
○ Keep making small, incremental improvements.

● Very fast and efficient if you make a good
initial guess.

● Can get stuck in local maxima if not.
○ Reset strategies help.

Gregory Gay CSCE 747 - Spring 2016 12

Generating Neighbors

● “Neighbors” are tests created by making a
small change to the current test.

● Single method call:
○ Switch value of boolean, other values from an

enumerated set, bounded range of numeric choices.
● Multiple method calls:

○ Insert a new method call.
○ Delete or replace an existing call.

■ Can replace by changing the method called or
the parameters.

● Important to control size of a neighborhood.
Gregory Gay CSCE 747 - Spring 2016 13

Hill Climbing

● Pick a initial solution at random. Examine the
local neighborhood. Choose the best
neighbor and “move” to it. Repeat until no
better solution can be found.
○ Climbs mountains in fitness function landscape.

● Strategies:
○ Steepest Ascent - examine all neighbors, take the

one with the highest improvement.
○ Random Ascent - examine neighbors at random,

and choose the first to show any improvement.

Gregory Gay CSCE 747 - Spring 2016 14

Simulated Annealing

● Choose a neighboring test case.
○ If it is a better solution, select it.
○ If not, select it at probability:

prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

○ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

● Repeat until search budget expires and
return best solution.

● Initially, large random jumps around the
search space. Over time, search stabilizes.

Gregory Gay CSCE 747 - Spring 2016 15

Global Search

● Generate a set of solutions.
● Score them.
● At a certain probability, sample from other

regions of the space.
● Strategies typically based on natural

processes - swarm attack patterns, ant
colony behavior, species evolution.
○ Models of how populations interact and change.

Gregory Gay CSCE 747 - Spring 2016 16

Genetic Algorithms

● Over multiple generations, evolve a
population - favoring good solutions and
filtering out bad solutions.

● Diversity is introduced to the population each
generation by:
○ Keeping some of the best solutions.
○ Randomly generating some population members.
○ Creating “offspring” through mutation and gene

crossover.

Gregory Gay CSCE 747 - Spring 2016 17

Genetic Algorithms - Mutation

● Create a copy of a high-
scoring test.

● Impose a small change
to that test.
○ Follow the rules for

determining the
neighbors of a test.

○ Choose a mutation from
that set.

● A good test could be
improved by checking
one of its neighbors.

Gregory Gay CSCE 747 - Spring 2016 18

Genetic Algorithms - Crossover

Gregory Gay CSCE 747 - Spring 2016 19

● Take two high-scoring
tests, and attempt to
combine aspects of them
into one.

● Choose one element,
sample from a probability
distribution to decide which
parent to inherit from.

● By combining features
from two good tests, we
may produce a better test.

Genetic Algorithms - Crossover

Gregory Gay CSCE 747 - Spring 2016 20

● One Point Crossover
○ Splice at a randomly

chosen crossover point.

● Uniform Crossover
○ Each point is a potential

crossover point.

● Discrete Recombination
○ Instead of sampling once

per index for both
children, it is done for for
every child.

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4

Particle Swarm Optimization

● A swarm of agents each attempt to search
for good test cases.

● When another agent finds a better solution
than the best known “worldwide”, they tell
everybody.

● Each agent mutates their solution based on
their knowledge of the best local solution
and the best global solution.

● Over time, the agents converge on the best
solutions.

Gregory Gay CSCE 747 - Spring 2016 21

Particle Swarm Optimization

● Each agent i has velocity vi and position pi.
○ Position: Their current solution.
○ Velocity: The amount of change to be made to the

solution.
■ Bound by a maximum velocity.

○ Vectors along all dimensions in the solution.
■ (i.e., method parameters)

● Each round, velocity and position are
updated based on current local and global
knowledge.

Gregory Gay CSCE 747 - Spring 2016 22

Particle Swarm Optimization

● Update Rules:
○ vi

d = ᶫvi
d + ᶓᶔ(bestg - pi

d) + ᶕᶖ(bestl - pi
d)

■ ᶫ is an inertial weight.
● ᶫ = ᶫmax - (ᶫmax - ᶫmin) time / maxTime
● Decreases linearly over time

■ ᶓ and ᶕ are user-set acceleration coefficients.
■ ᶔ and ᶖ are random numbers
■ bestg is the global best score. bestl is the local

best score.
● Guide the velocity and position of the agent.

○ pi
d = pi

d + vi
d

Gregory Gay CSCE 747 - Spring 2016 23

Fitness Functions

● Solutions are judged by a “fitness function”
that takes in the solution and calculates a
score.
○ Distance from the current solution to the “ideal”

solution.
■ How close are you to covering a testing goal?

○ Smaller scores are typically better.
○ Must offer information to guide the search.
○ Must be cheap to calculate - performed 100s-1000s

of times per generation.

Gregory Gay CSCE 747 - Spring 2016 24

Structural Coverage

● Normally measured as proportion of test
obligations covered to total obligations.

● This serves as a score - how good are
current testing efforts.

● However, this is not an ideal fitness function.
○ Does not inform the search process.
○ Instead - can we score a test such that we can learn

from the attempt?
■ Not just “is this good”, but “how close is this to

ideal?”

Gregory Gay CSCE 747 - Spring 2016 25

Branch Coverage Fitness Function

● Instead of raw coverage, use the branch
distance and approach level:

fitness(s,b) = AL(s,b) + normalize(BD(s,b))

● Approach level - count of the branch’s
control-dependent nodes not yet executed.

● Branch distance - if the other branch is
taken, measure how close the target branch
was from being taken.

Gregory Gay CSCE 747 - Spring 2016 26

Branch Coverage Fitness Function

if(x < 10){ // Node 1
// Do something.

}else if (x == 10){ // Node 2
// Do something else.

}

● Goal, true
branch of
Node 2.

● If x<10 is true,
approach level
= 1

● If x==10 is
reached,
approach level
= 0

● Goal, true branch
of Node 2.

● If x==10 evaluates
to false, branch
distance = (abs(x-
10)+k).

● Closer x is to 10,
closer the branch
distance.

Gregory Gay CSCE 747 - Spring 2016 27

evosuite demonstration

Comparing Approaches

Gregory Gay CSCE 747 - Spring 2016 29

Highly
Applicable,
Low
Chance of
Efficacy

Less
Applicable,
High
Chance of
Efficacy

RT

● Less efficient than ART.
○ But more likely to achieve the testing goal.

● Fewer restrictions than DSE.
○ But no guarantee of optimality.

● Choice of fitness function is important.
○ Must be fast to calculate.
○ Must quickly converge on optimal solutions.

ART SEDSEMS

Combining Approaches
class Foo {

int x = 0;

void inc(){

x++;

}

int getX(){

return x;

}

}

Gregory Gay CSCE 747 - Spring 2016 30

class Bar{

String x;

Bar(String x){

this.x = x;

}

void coverMe(Foo f){

 String y = x + f.getX();

 if(y.equals(“baz5”))

// target

}

}

● MS can achieve high coverage, but will not guess “baz”.
● DSE can identify “baz”, but will not call Foo.inc() five times.
● By combining the two, the target can be covered.

Not Just Test Generation...

Metaheuristic search can be applied to any
problem with:
● A large search space.
● Fitness function and solution generation

methods with low computational complexity.
● Approximate continuity in the fitness

function.
● No known optimal solution.

Gregory Gay CSCE 747 - Spring 2016 31

Automated Program Repair

● Popular projects may have hundreds of bugs
reported per day.

● Repair techniques, like GenProg,
automatically produce patches that can
repair common bug types.

● Many bugs can be fixed with just a few
changes to the source code - inserting new
code, deleting or moving existing code.

● GenProg uses the same ideas to search for
repairs automatically.

Gregory Gay CSCE 747 - Spring 2016 32

GenProg

● Genetic programming - solutions represent
sequences of edits to the source code.

● Each candidate patch is applied to the
program to produce a new program.

● See if the patched program passes all tests.
○ Fitness function: how many tests pass?

● Use crossover and mutation to evolve better
patches.

Gregory Gay CSCE 747 - Spring 2016 33

GenProg Results

● GenProg repaired 55 out of 105 bugs at an
average cost of $8 per bug.
○ Large projects - over 5 million lines of code, 10000

test cases.
● Able to patch infinite loops, segmentation

faults, buffer overflows, denial of service
vulnerabilities, “wrong output” faults, and
more.

Gregory Gay CSCE 747 - Spring 2016 34

Automated Code Transplantation

● Not just patches…
● Many coding tasks involve “reinventing the

wheel” - redesigning and writing code to
perform a function that already exists in
some other project.

● What if we could slice out that code (“organ”)
from a “donor” program and transplant it to
the right “vein” in the target software?

Gregory Gay CSCE 747 - Spring 2016 35

muScalpel

● Uses a form of genetic programming.
● Initial population of 1 statement patches.

○ Organs need very few statements from the donor.
○ Starting with one line at a time allows muScalpel to

find efficient solutions quickly.
● Search evolves both organs and veins.

○ Optimize the set of code transplanted from the
donor, and the optimal location to place that code in
the target software.

● Apply tests to ensure correctness of both
original code and new features.

Gregory Gay CSCE 747 - Spring 2016 36

muScalpel Results

● Transplantation of H.264 video codec from
x264 system to VLC media player.
○ Took VLC developers 20 days to write the code

manually.
○ Took muScalpal 26 hours to transplant

automatically.
● In 12 of 15 experiments, successful

transplants that passed all tests.

Gregory Gay CSCE 747 - Spring 2016 37

We Have Learned

● ART is often ineffective, and DSE is limited
in the scope of the programs it can be
applied to.

● Metaheuristic search strikes middle ground:
○ Less efficient than ART, but often more effective.
○ Able to generate tests for programs that DSE cannot

address.
● Smart strategies for sampling from a search

space. Designed to produce near-optimal
solutions within a limited search budget.

Gregory Gay CSCE 747 - Spring 2016 38

We Have Learned

● Local methods attempt to make small
changes to a current solution.
○ Hill climbers, simulated annealing.

● Global methods try solutions from all around
the search space.
○ Genetic algorithms, particle swarm optimization.

● Can also be used to automate patching and
feature transplantation.

Gregory Gay CSCE 747 - Spring 2016 39

Next Time

● Software Inspections
○ Ch. 18

● Homework:
○ Assignment 4 - due April 5!

Gregory Gay CSCE 747 - Spring 2016 40

