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Testing as a Search Problem

● Do you have a goal in mind when testing?
● Can that goal be measured?
● Then you are searching for a test suite that 

achieves that goal. 
○ Out of the near-infinite set of inputs, I would like a 

set of inputs that…
■ obey those properties.
■ cover all branches.
■ try all 2-way pairs of representative values.
■ (etc)
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Testing as a Search Problem

● “I want to find all faults” cannot be checked.
● However, almost all testing goals can.

○ Boolean: Property Satisfied/Not Satisfied
○ Numeric: % Coverage Obtained

● If we can take a candidate solution and 
check whether it meets our goal, then 
computers can search for a solution.

● Many search techniques for automated test 
case generation.
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Search Process

● Choose a solution. If it does not accomplish 
the goal, try another.

● Keep trying new solutions until goal is 
achieved or all solutions are tried.

● The order that solutions are tried is key to 
efficiently finding a solution.

● A search follows some defined strategy. 
○ Called a “heuristic”.
○ Heuristics are used to choose solutions and to 

ignore solutions known to be unviable.
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Search Budget

● Exhaustive Search - try all solutions.
● Most software has near-infinite number of 

inputs. We generally cannot try all solutions 
without constraining the problem.

● Search can be bound by a search budget.
○ Number of attempts made.
○ Time allotted to the search.

● Optimization problem:
○ Search for the best solution possible given the 

search budget.
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Search Heuristics

● Simple strategy: randomly generate input.
○ Fast, easy to understand, very bad at finding faults.

● Adaptive random testing applies strategies 
to control the distribution of random test 
generation.
○ Retains benefits of RT, more likely to find faults.

● Dynamic symbolic execution extracts logical 
expressions describing program paths, and 
generates input from those expressions.
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Search Heuristics
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Highly 
Applicable, 
Low 
Chance of 
Efficacy

Less 
Applicable, 
High 
Chance of 
Efficacy

RT

● Random Testing: 
○ Very fast, easy to implement, requires no information about the 

system.
○ Unlikely to satisfy goals.

ART

● Adaptive Random Testing: 
○ Almost as efficient as RT, same other benefits, far more likely 

to satisfy goals. Still based on random chance.
● (Dynamic) Symbolic Execution: 

○ Will find an exact solution if possible.
○ Many restrictions on complexity and data structures of the 

programs supported.

 SEDSE



Optimization Problem

● Often too many restrictions to make 
exhaustive search feasible.

● No way to try all inputs or abstract complex 
systems. Instead, need a strategy to sample 
from the input space.
○ But not in a purely random manner.

● How can we find the best solution possible 
given a limited search budget?
○ Can apply optimization algorithms.
○ Called metaheuristic search techniques.
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Metaheuristic Search



Optimization Problem

● If we can calculate a score related to 
attainment of a testing goal, then we have an 
optimization target.

● Test generation as an optimization problem:
○ Generate a test (or set of tests).
○ Score each of them using a fitness function.
○ Manipulate the solution according to a search 

strategy (the “metaheuristic”).
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Metaheuristic Search

● Choose a smart strategy to sample from the 
search space.
○ Not purely random - fitness function guides the 

search towards better solutions.
○ The metaheuristic changes its approach based on 

past attempts.
● No guarantee of an optimal solution…

○ … but if we’re smart, we’ll hit something close 
enough.

● Computationally feasible, and often more 
effective than random search.
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Local Search

● Generate a potential solution.
● Score it using your fitness function.
● Attempt to improve it by looking at its local 

neighborhood. 
○ Test cases minorly different from the current choice.
○ Keep making small, incremental improvements.

● Very fast and efficient if you make a good 
initial guess. 

● Can get stuck in local maxima if not.
○ Reset strategies help.
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Generating Neighbors

● “Neighbors” are tests created by making a 
small change to the current test.

● Single method call:
○ Switch value of boolean, other values from an 

enumerated set, bounded range of numeric choices.
● Multiple method calls:

○ Insert a new method call.
○ Delete or replace an existing call.

■ Can replace by changing the method called or 
the parameters.

● Important to control size of a neighborhood.
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Hill Climbing

● Pick a initial solution at random. Examine the 
local neighborhood. Choose the best 
neighbor and “move” to it. Repeat until no 
better solution can be found.
○ Climbs mountains in fitness function landscape.

● Strategies:
○ Steepest Ascent - examine all neighbors, take the 

one with the highest improvement.
○ Random Ascent - examine neighbors at random, 

and choose the first to show any improvement.
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Simulated Annealing

● Choose a neighboring test case.
○ If it is a better solution, select it.
○ If not, select it at probability:

prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

○ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

● Repeat until search budget expires and 
return best solution.

● Initially, large random jumps around the 
search space. Over time, search stabilizes.
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Global Search

● Generate a set of solutions.
● Score them.
● At a certain probability, sample from other 

regions of the space.
● Strategies typically based on natural 

processes - swarm attack patterns, ant 
colony behavior, species evolution.
○ Models of how populations interact and change.
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Genetic Algorithms

● Over multiple generations, evolve a 
population - favoring good solutions and 
filtering out bad solutions.

● Diversity is introduced to the population each 
generation by:
○ Keeping some of the best solutions.
○ Randomly generating some population members.
○ Creating “offspring” through mutation and gene 

crossover.
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Genetic Algorithms - Mutation

● Create a copy of a high-
scoring test.

● Impose a small change 
to that test.
○ Follow the rules for 

determining the 
neighbors of a test.

○ Choose a mutation from 
that set.

● A good test could be 
improved by checking 
one of its neighbors.
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Genetic Algorithms - Crossover
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● Take two high-scoring 
tests, and attempt to 
combine aspects of them 
into one.

● Choose one element, 
sample from a probability 
distribution to decide which 
parent to inherit from.

● By combining features 
from two good tests, we 
may produce a better test.



Genetic Algorithms - Crossover
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● One Point Crossover
○ Splice at a randomly 

chosen crossover point.

● Uniform Crossover
○ Each point is a potential 

crossover point.

● Discrete Recombination
○ Instead of sampling once 

per index for both 
children, it is done for for 
every child. 
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Particle Swarm Optimization

● A swarm of agents each attempt to search 
for good test cases.

● When another agent finds a better solution 
than the best known “worldwide”, they tell 
everybody. 

● Each agent mutates their solution based on 
their knowledge of the best local solution 
and the best global solution.

● Over time, the agents converge on the best 
solutions.
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Particle Swarm Optimization

● Each agent i has velocity vi and position pi.
○ Position: Their current solution.
○ Velocity: The amount of change to be made to the 

solution.
■ Bound by a maximum velocity.

○ Vectors along all dimensions in the solution.
■ (i.e., method parameters) 

● Each round, velocity and position are 
updated based on current local and global 
knowledge.
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Particle Swarm Optimization

● Update Rules:
○ vi

d = ᶫvi
d + ᶓᶔ(bestg - pi

d) + ᶕᶖ(bestl - pi
d)

■ ᶫ is an inertial weight. 
● ᶫ = ᶫmax - (ᶫmax - ᶫmin) time / maxTime
● Decreases linearly over time

■ ᶓ and ᶕ are user-set acceleration coefficients.
■ ᶔ and ᶖ are random numbers
■ bestg is the global best score. bestl is the local 

best score.
● Guide the velocity and position of the agent.

○ pi
d = pi

d + vi
d
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Fitness Functions

● Solutions are judged by a “fitness function” 
that takes in the solution and calculates a 
score.
○ Distance from the current solution to the “ideal” 

solution.
■ How close are you to covering a testing goal?

○ Smaller scores are typically better.
○ Must offer information to guide the search.
○ Must be cheap to calculate - performed 100s-1000s 

of times per generation.
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Structural Coverage

● Normally measured as proportion of test 
obligations covered to total obligations. 

● This serves as a score - how good are 
current testing efforts.

● However, this is not an ideal fitness function.
○ Does not inform the search process.
○ Instead - can we score a test such that we can learn 

from the attempt?
■ Not just “is this good”, but “how close is this to 

ideal?”
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Branch Coverage Fitness Function

● Instead of raw coverage, use the branch 
distance and approach level:

fitness(s,b) = AL(s,b) + normalize(BD(s,b))

● Approach level - count of the branch’s 
control-dependent nodes not yet executed.

● Branch distance - if the other branch is 
taken, measure how close the target branch 
was from being taken. 
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Branch Coverage Fitness Function

if(x < 10){ // Node 1
// Do something.

}else if (x == 10){ // Node 2
// Do something else.

}

● Goal, true 
branch of 
Node 2.

● If x<10 is true, 
approach level 
= 1

● If x==10 is 
reached, 
approach level 
= 0

● Goal, true branch 
of Node 2.

● If x==10 evaluates 
to false, branch 
distance = (abs(x-
10)+k).

● Closer x is to 10, 
closer the branch  
distance.
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evosuite demonstration



Comparing Approaches
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Highly 
Applicable, 
Low 
Chance of 
Efficacy

Less 
Applicable, 
High 
Chance of 
Efficacy

RT

● Less efficient than ART.
○ But more likely to achieve the testing goal.

● Fewer restrictions than DSE.
○ But no guarantee of optimality.

● Choice of fitness function is important.
○ Must be fast to calculate.
○ Must quickly converge on optimal solutions.

ART  SEDSEMS



Combining Approaches
class Foo {

int x = 0;

void inc(){

x++;

}

int getX(){

return x;

}

}
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class Bar{

String x;

Bar(String x){

this.x = x;

}

void coverMe(Foo f){

  String y = x + f.getX();

  if(y.equals(“baz5”))

// target

}

}

● MS can achieve high coverage, but will not guess “baz”.
● DSE can identify “baz”, but will not call Foo.inc() five times.
● By combining the two, the target can be covered.



Not Just Test Generation...

Metaheuristic search can be applied to any 
problem with:
● A large search space.
● Fitness function and solution generation 

methods with low computational complexity.
● Approximate continuity in the fitness 

function.
● No known optimal solution.
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Automated Program Repair

● Popular projects may have hundreds of bugs 
reported per day.

● Repair techniques, like GenProg, 
automatically produce patches that can 
repair common bug types. 

● Many bugs can be fixed with just a few 
changes to the source code - inserting new 
code, deleting or moving existing code. 

● GenProg uses the same ideas to search for 
repairs automatically.
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GenProg

● Genetic programming - solutions represent 
sequences of edits to the source code. 

● Each candidate patch is applied to the 
program to produce a new program.

● See if the patched program passes all tests.
○ Fitness function: how many tests pass?

● Use crossover and mutation to evolve better 
patches.
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GenProg Results

● GenProg repaired 55 out of 105 bugs at an 
average cost of $8 per bug.
○ Large projects - over 5 million lines of code, 10000 

test cases.
● Able to patch infinite loops, segmentation 

faults, buffer overflows, denial of service 
vulnerabilities, “wrong output” faults, and 
more.
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Automated Code Transplantation

● Not just patches… 
● Many coding tasks involve “reinventing the 

wheel” - redesigning and writing code to 
perform a function that already exists in 
some other project.

● What if we could slice out that code (“organ”) 
from a “donor” program and transplant it to 
the right “vein” in the target software? 
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muScalpel

● Uses a form of genetic programming.
● Initial population of 1 statement patches.

○ Organs need very few statements from the donor.
○ Starting with one line at a time allows muScalpel to 

find efficient solutions quickly.
● Search evolves both organs and veins.

○ Optimize the set of code transplanted from the 
donor, and the optimal location to place that code in 
the target software.

● Apply tests to ensure correctness of both 
original code and new features.
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muScalpel Results

● Transplantation of H.264 video codec from 
x264 system to VLC media player.
○ Took VLC developers 20 days to write the code 

manually.
○ Took muScalpal 26 hours to transplant 

automatically.
● In 12 of 15 experiments, successful 

transplants that passed all tests.
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We Have Learned

● ART is often ineffective, and DSE is limited 
in the scope of the programs it can be 
applied to.

● Metaheuristic search strikes middle ground:
○ Less efficient than ART, but often more effective.
○ Able to generate tests for programs that DSE cannot 

address.
● Smart strategies for sampling from a search 

space. Designed to produce near-optimal 
solutions within a limited search budget.
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We Have Learned

● Local methods attempt to make small 
changes to a current solution.
○ Hill climbers, simulated annealing.

● Global methods try solutions from all around 
the search space.
○ Genetic algorithms, particle swarm optimization.

● Can also be used to automate patching and 
feature transplantation.
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Next Time

● Software Inspections
○ Ch. 18

● Homework:
○ Assignment 4 - due April 5!
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