
Software Inspections
CSCE 747 - Lecture 22 - 03/31/2016

Low Tech Approach to a High Tech
Problem

● Too many dependencies
to test the existing
classes?

● Code too complex to
apply analysis?

● Have you tried reading
the source code?
○ That is - have you

performed an
inspection?
■ Manual, collaborative

review of project
artifacts.

Gregory Gay CSCE 747 - Spring 2016 2

Software Inspections

● Can check properties that are hard to verify
dynamically.

● Flexible approach:
○ Code does not need to execute.

■ Can be applied before code is complete.
○ No limitations regarding scalability, data structures

used, pointers, etc.
○ Can be applied to any project artifact.

● Effective in revealing faults earlier in
development than testing.

Gregory Gay CSCE 747 - Spring 2016 3

Social and Educational Benefits

● Creates incentive to build better artifacts.
○ It is embarrassing when others find and discuss

flaws in your work.
■ Goal should not be to embarass, but that is a

common side-effect.
● Effective way to form and communicate

organizational standards.
○ Engineers tend to be quick to share experience and

knowledge relevant to a shared problem.
○ When a new practice is introduced, inspections are a

quick way to share awareness of it.
Gregory Gay CSCE 747 - Spring 2016 4

Social and Educational Benefits

● New staff can be immediately productive.
○ Can self-inspect against the checklists used in

inspection.
○ Taking part in a group inspection can be a fast

training method.
● Social and educational benefits should be

taken into account when designing
inspection process and forming teams.

Gregory Gay CSCE 747 - Spring 2016 5

Software Inspections

● Characterized by:
○ Roles - who are the inspectors?
○ Process - how the inspectors organize and

synchronize their work.
○ Reading Techniques - how inspectors examine an

artifact.
● Not a full-time job:

○ Productivity drops after two hours of work.
○ No more than two inspection sessions per day.

Gregory Gay CSCE 747 - Spring 2016 6

The Inspection Team

● Inspectors are usually a combination of
existing team members:
○ Junior and senior engineers, test engineers, project

managers, analysts, architects, technical writers.
● Efficacy lower if developers feel like they are

being judged.
○ Senior engineers and managers usually pulled from

unrelated projects to ensure unbiased inspection.

Gregory Gay CSCE 747 - Spring 2016 7

The Inspection Team

● Inspection team should balance
perspectives, knowledge, and cost.
○ A developer is most knowledgeable about their own

work, but may be blind to weaknesses in their work.
○ Inspection benefits from differing perspectives and

expertise.
● Cost grows with the size of the team.

○ Classic - 4 to 6 people. Modern - pairs may be best.
○ Levels of inspection: simple with one inspector,

complex with two, larger groups for special
occasions that need particular expertise.

Gregory Gay CSCE 747 - Spring 2016 8

Inspection Team Sizes

● Inspection team members should never be
responsible for the artifact being inspected.
○ Often borrowed from another team entirely.

● Simple inspections:
○ Single junior engineer.
○ Combines inspection and training.

● “Standard” inspections:
○ Pair of a junior and a senior engineer.
○ Senior engineer acts as a moderator.

■ Organizes the inspection.
■ Responsible for final results.

Gregory Gay CSCE 747 - Spring 2016 9

Inspection Team Make-up

● Larger groups (four to six) used for complex
modules, looking for integration problems.
○ A senior engineer or manager organizes the process

and assembles final results.
○ Mix of senior and junior engineers read and inspect

the artifact, discuss possible issues.
○ Developer of the artifact is often present to answer

questions or explain design choices.
○ Often used when particular specialties are needed to

understand parts of the module.

Gregory Gay CSCE 747 - Spring 2016 10

Reward Mechanisms

● Developers must be motivated to collaborate.
● Reward mechanisms can influence attitude.

○ Must be carefully designed to avoid negative effects.
■ Assessment of fault density that includes faults revealed by

inspection might encourage developers to hide faults.
■ Incentives that naively reward faults found can also punish

developers that bring high-quality code.

Gregory Gay CSCE 747 - Spring 2016 11

Inspection Process

● Systematic, efficient, repeatable process.
● Expensive and not incremental.

○ Reinspection costs as much as initial inspection.
○ Should be placed to reveal faults early.

■ Do not inspect if still under active construction.
■ But does not need to be completely finished.

● Activities can take place at different phases:
○ Check consistency and completeness of comments

before testing.
○ Check for semantic consistency of code after testing.

Gregory Gay CSCE 747 - Spring 2016 12

Inspection Process

● Three main phases - preparation, review,
follow-up.

● Preparatory Phase
○ Inspectors check that artifacts to be inspected are

ready.
○ Assign inspection roles.
○ Acquire information needed for inspections.
○ Plan individual inspection activities.
○ Schedule inspection meetings.

Gregory Gay CSCE 747 - Spring 2016 13

Inspection Process

● Review Phase:
○ Artifact reviewed individually, then in teams.
○ Artifact closely examined for issues by checking the

contents against one or more checklists.
■ Based on fault types, style expectations,

regulations, practices, etc.
● Follow-Up Phase:

○ Developers notified of results.
○ Developers and test engineers identify faults to fix,

and create a schedule for making changes.
○ Follow up checks may be scheduled.

Gregory Gay CSCE 747 - Spring 2016 14

Checklists

● Summarize experience accumulated in
previous projects.

● Contains a set of questions that help identify
faults in the artifact.
○ Updated regularly to add new checks and remove

obsolete elements.
● Length and complexity depends on use.

○ Should be completable in one review session.
○ Long list of simple questions for syntactic review.
○ Short list with complex questions for semantic

review.
Gregory Gay CSCE 747 - Spring 2016 15

Checklists

● Can be applied to a variety of artifacts.
○ Source code, requirement specification, design

description, test suites, reports.
● Can assess functional correctness,

consistency, completeness, ambiguity of
natural language, compliance with
regulations, etc.

● Structured hierarchically, used incrementally.
○ Simple checks conducted by single inspectors.
○ Complex checks conducted in group reviews.

Gregory Gay CSCE 747 - Spring 2016 16

Java Checklist - Single Inspector

● File Header
○ Are the following included and consistent?

■ Author and current maintainer.
■ Cross-reference to design entity.
■ Overview of package structure, if the class is the entry

point of the package.
● File Footer

○ Is there a revision log to minimum of one year or most recent
point release?

● Import Section
○ Is there a brief comment on each import with the exception of

standard java.io.* or java.util.*?
○ Does each imported package correspond to a dependence in

the design documentation?

Gregory Gay CSCE 747 - Spring 2016 17

Java Checklist - Single Inspector

● Class Declaration
○ Is the constructor explicit?
○ Is the visibility of the class consistent with the design

document?
○ Does the JavaDoc header include:

■ A one sentence summary of class functionality?
■ Guaranteed invariants (for data structures)?
■ Usage instructions?

● Class
○ Are names compliant with the following rules?

■ Class or interface: CapitalizedWithEachWord
■ Exception: ClassNameEndsWithException
■ Constants (final): ALL_CAPS_UNDERSCORES
■ Field Name: capsAfterFirstWord

● Must be meaningful outside of context.
Gregory Gay CSCE 747 - Spring 2016 18

Java Checklist - Single Inspector

● Methods
○ Are names compliant with the following rules?

■ Method name: capsAfterFirstWord
■ Local variables: capsAfterFirstWord

● Names may be short (e.g., i for integer) if scope of
declaration and use is less than 30 lines.

■ Factory method for X: newX
■ Converter to X: toX
■ Getter for attribute X: getX();
■ Setter for attribute X: void setX;

Gregory Gay CSCE 747 - Spring 2016 19

Java Checklist - Inspection Team

● Data Structure Classes:
○ Does the class keep a design secret?
○ Is the substitution principle respected?

■ Instance of class can be used in any context allowing an instance
of superclass or interface.

○ Are methods correctly classified as constructors, modifiers, and
observers?

○ Is there an abstract model for understanding behavior?
○ Are the structural invariants documented?

● Methods:
○ Are method semantics consistent with similarly named

methods?
■ (put(O) matches put(O) use for other classes)

○ Are usage examples provided for nontrivial methods?

Gregory Gay CSCE 747 - Spring 2016 20

Java Checklist - Inspection Team

● Fields
○ Is the field necessary (cannot be a local variable)?
○ Is the field protected or private?

■ If not, is there justification for public access?
○ Are there comments describing the purpose of the field?
○ Are there any constraints or invariants documented in the field

or class comment header?
● Design Decisions:

○ Is each design decision hidden in one class or a minimum
number of closely-related classes?

○ Do classes encapsulating a design decision unnecessarily
depend on other design decisions?

○ Are adequate usage examples provided?
○ Are design patterns reference and used when appropriate?

■ If so, does the code match the pattern?
Gregory Gay CSCE 747 - Spring 2016 21

Checklist Organization

● Consists of a set of features, and items to be
checked for each feature.
○ Directs the reviewers’ attention to the right set of

checks during review.
○ Items to be checked ask whether certain properties

hold over the artifact.
■ A positive answer should indicate compliance.

○ Inspectors check “yes” or “no”, and add comments
explaining their decision.
■ Should include the location where a violation

occurs.

Gregory Gay CSCE 747 - Spring 2016 22

Checklist Items

● Should not include items that can be easily
checked with automated analyses.
○ A copyright statement could be automatically

included, and doesn’t need to be checked.
○ Maintainer name might not be auto-inserted and can

be out of date.
● Properties should be objective and

unambiguous.
○ “Are comments well-written?” is subjective.
○ “Is there a one sentence description of class

functionality?” is not.
Gregory Gay CSCE 747 - Spring 2016 23

Checklist Items

● The items should be tuned to the type of
artifact being inspected.

● What kind of “faults” can be inserted in that
artifact?
○ In requirements, a specification can be wrong.

■ It can also be inconsistent, written ambiguously,
incomplete, unrealistic to implement.

■ Could have a checklist to evaluate the writing
style used to draft the specification.

Gregory Gay CSCE 747 - Spring 2016 24

Specification Writing Style Checklist
1. Have you varied the stress pattern in a sentence to reveal

alternative meanings?
2. Could you commit to implementing this requirement within a week?
3. If a term is defined elsewhere, can you substitute the term for its

definition?
4. When a graphical element is described in words, can you sketch a

picture of it?
5. When a picture describes a graphical element, can you redraw the

picture in a form that emphasizes different aspects?
6. When there is an equation, can you expressing the meaning of the

equation in words?
7. When a calculation is specified or implied in words, can you

expressing it in an equation?
8. When a calculation is specified, can you work through at least two

concrete examples by hand?

Gregory Gay CSCE 747 - Spring 2016 25

Specification Writing Style Checklist
9. If there are statements that imply certainty or are used to persuade

the reader, is evidence provided to back those assertions?
10. Are vague words used that need clarification?
11. Are non-committal words used?
12. Are lists complete?

a. If “etc” is used, is the meaning clear?
13. If assertions are made, do they contain unstated assumptions?
14. Are there requirements without examples (or too few/too similar

examples)?
15. Are vague verbs used?
16. Is passive voice used? Passive voice does not name an actor.
17. Are comparisons made without clearly stating what is being

referred to?
18. Are pronouns clear to both the writer and the reader?

Gregory Gay CSCE 747 - Spring 2016 26

Test Plan Checklist

● Items to be tested or analyzed:
○ For each item, does the plan include a reference to the

specification for that item?
○ For each item, does the plan include a reference to installation

procedures for the item, if any?
● Test and analysis approach:

○ Are the techniques to be applied cost-effective for items of this
type?

○ Do the techniques to be applied cover the relevant properties
cost-effectively?

○ Is the description sufficiently detailed to identify major testing
and analysis tasks and estimate time and resources?

Gregory Gay CSCE 747 - Spring 2016 27

Test Plan Checklist

● Pass/Fail Criteria:
○ Do the criteria clearly indicate the pass/fail conditions?
○ Are the criteria consistent with quality standards specified in the

test and analysis strategy?
● Suspend/Resume Criteria:

○ Do the criteria clearly indicate threshold conditions for
suspending test and analysis due to excessive defects?

○ Do the criteria clearly indicate conditions for resuming test and
analysis after suspension and rework?

● Risks and Contingencies:
○ Are the following risks addressed?

■ Personnel risks, technology risks, schedule risks,
development risks, execution risks, risks from critical
requirements.

Gregory Gay CSCE 747 - Spring 2016 28

Test Plan Checklist

● Contingency Plan:
○ Is each identified risk adequately considered in the contingency

plan?
● Tasks and Schedule:

○ Do the tasks cover all aspects that need to be tested?
○ Is the description of the tasks complete?
○ Are the relations among tasks complete and consistent?
○ Is the resource allocation and constraint list adequate?
○ Does the schedule satisfy all milestones?
○ Are critical paths minimized?

Gregory Gay CSCE 747 - Spring 2016 29

Domain-Specific Checklists

What problems and test scenarios can we
anticipate in the automated cooling
system?

Control
Panel

Cooling
Software

Reactor

Chemical
Tank

Gregory Gay CSCE 747 - Spring 2016 30

Checklist for Embedded Systems
1. Is the software’s response to out-of-range values specified for

every input?
2. Is the software’s response to not receiving an expected input

specified?
a. Are timeouts provided?
b. Does the software specify the latency of the timeout?

3. If input arrives when it shouldn’t, is a response specified?
4. On a given input, will the software always follow the same path

through the source code?
5. Is each input bound in time?

a. Does the specification include the earliest time at which it will
be accepted and the latest time it will be considered valid?

6. Is a minimum and maximum arrival rate specified for each input?
a. What if input arrives too often?
b. Is there a capacity limit on interrupts?

Gregory Gay CSCE 747 - Spring 2016 31

Checklist for Embedded Systems
7. If interrupts are masked or disabled, can events be lost?
8. Can software output be produced faster than it can be used by the

receiving system?
a. Is overload behavior specified?

9. Can all of the outputs from the sensors be used by the software?
10. Can input received before startup, while offline, or after shutdown

influence the software’s startup behavior?
a. Are the values of any counters/timers/signals retained following

shutdown? Is the earliest or most recent value retained?
11. In cases where performance degradation is the chosen error

response, is the degradation predictable?
12. Are there sufficient delays incorporates into error-recovery

responses?

Gregory Gay CSCE 747 - Spring 2016 32

Generality of Checklists

Domain-specific checklists focus on common
pitfalls of one domain, but hold important
lessons for other problems.

Use checklists to set expectations, but not to
limit analysis of an artifact.

Gregory Gay CSCE 747 - Spring 2016 33

Checklists are Effective

On two NASA spacecraft projects, 192 critical
errors were found during integration and
testing.
● 142 of those were found and addressed after

using a simple safety checklist.
● Most were problems with unexpected input.

○ Unexpected values, and more importantly,
unexpected timing (recall the embedded
system checklist).

Gregory Gay CSCE 747 - Spring 2016 34

Pair Programming

● Practice associated with agile processes.
● Two programmers work together at the

same computer.
○ While one types, the other inspects the code.
○ The pair actively discuss implementation decisions.
○ The developer not typing can also plan ahead and

think about design alternatives.
○ Merges development and inspection.

■ Less code written, but can be more effective by
producing higher quality code.

Gregory Gay CSCE 747 - Spring 2016 35

Pair Programming

● Inspection not driven by checklists, but
based on shared programming practice and
style ideas.

● Inspector and coder swap roles, and take
leadership on parts of the system.
○ Code is “owned” by the team, rather than by

individual programmers.
○ Requires attitude of “egoless programming”

■ Criticism of artifacts is not regarded as criticism
of authors.

Gregory Gay CSCE 747 - Spring 2016 36

Activity
● You are inspecting the source code for the Graduate Record and Data

System (GRADS).
○ A system that graduate students can log into and use to view their

transcript or a summary of their progress towards graduation.
● Your current task is to inspect the class “Session”.

○ A class used to track information about a user of the system, as well
as to store the contents of databases in memory.

● You have been provided with a checklist of common Java code style
issues, and are to inspect the Session class against that list.

● Working in pairs, document below which checklist items were not
met, and why they were not met. Provide advice on how to address
that shortcoming.

Gregory Gay CSCE 747 - Spring 2016 37

Activity - Failed Checklist Items

● File Header
○ Are the following included and consistent?

■ Author and current maintainer.
● No - maintainer is not included.

● Import Section
○ Is there a brief comment on each import with the exception of

standard java.io.* or java.util.*?
■ Imported class CourseTaken has no comment.

● Class Declaration
○ Is the constructor explicit?

■ No constructor is included.
○ Is the class protected or private?

■ If not, is there justification for public access?
● No justification provided. Perhaps this should be at

least protected.
Gregory Gay CSCE 747 - Spring 2016 38

Activity - Failed Checklist Items

● Methods
○ Are names compliant with the following rules?

■ Local variables: capsAfterFirstWord
● Variable “toreturn” violates naming convention.

■ Getter for attribute X: getX();
■ Setter for attribute X: void setX;

● getUser and setUser should be getCurrentUser and
setCurrentUser.

Gregory Gay CSCE 747 - Spring 2016 39

Activity - Failed Checklist Items

● Fields
○ Is the field necessary (cannot be a local variable)?

■ userId can just be a local variable (or eliminated
entirely - it is passed into each method that uses it.

○ Are there any constraints or invariants documented in the field
or class comment header?
■ No, but does there need to be?

● I.e., do not blindly apply checklist criteria.

Gregory Gay CSCE 747 - Spring 2016 40

We Have Learned

● Inspections are one of the most flexible
analysis techniques.
○ All documents can be inspected.
○ Inspection can take place before code can execute.
○ Can “scale” to any complexity and has no limitations

on the type of programs that can be studied.
● Teams compare artifacts to document-

specific checklists.
○ Can check functional correctness, writing style,

completeness, consistency, regulatory compliance,
etc.

Gregory Gay CSCE 747 - Spring 2016 41

Next Time

● Testing as we near release.
○ System, acceptance, and regression testing.
○ Chapter 22

● Homework:
○ Assignment 4 - due April 5!

Gregory Gay CSCE 747 - Spring 2016 42

