
Verification as Part of the
Development Process
CSCE 747 - Lecture 25 - 04/12/2016

Life Cycle of Software

Any product - software included - has a life
cycle: a timeline that can be split into the
required phases of existence.

What are the phases of a software lifecycle?

Requirements Definition
Software Design
Implementation

Testing
Release
Operation/
Maintenance

Project Planning

Gregory Gay CSCE 747 - Spring 2016 2

The Need for Planning

Why do we get stuck in the code & fix loop?

We know the phases of the lifecycle. We know
there are activities that must be performed:
● Specification, Design, Coding, Testing, Evolution

Lack structure and guidance:
● When are we done? When do we move on?
● Activities must be planned and modeled if they are to be

managed.

Gregory Gay CSCE 747 - Spring 2016 3

Risk Management

The principle task of a manager is to minimize
(avoid or mitigate) risk.
● The “risk” in an activity is a measure of the

uncertainty of the outcome of that activity.
○ Risk is related to the amount and quality of available

information.
○ What are the risk factors? What will be their impact?

How likely are they to arise?

Gregory Gay CSCE 747 - Spring 2016 4

Defining a Process

Process: a flow of events that describes how
something works.
● In our case - defines a timeline of human

activities required to build software.
● Structures who is doing what, when, and how.
● Many different software processes:

○ Traditional: Strict, regimented phases. We move to a
new phase only once one is done.

○ Agile: Short bursts of development where
specification, design, testing, and coding are mixed.

Gregory Gay CSCE 747 - Spring 2016 5

Risk Management

High-risk activities cause schedule and cost
overruns.

A visible process provides the means to
track, assess, and mitigate risk.

Processes provide quality and predictability by
removing risk.

Gregory Gay CSCE 747 - Spring 2016 6

The Quality Process

Quality Process

● “Quality” is not something that can be added
in a final step before delivery.

● A testing phase is part of development...
○ … but quality-assuring activities (testing, verification)

should be part of all stages of the life cycle.
○ Quality must be a part of all development phases,

not just during analysis and testing.
● Quality process is our plan for ensuring

quality in the final release.
○ Intertwined with the overall process.

Gregory Gay CSCE 747 - Spring 2016 8

Quality Process

● A framework for selecting and scheduling
activities towards a particular goal.
○ Considers trade-offs and interactions with other

important goals.
● All activities involve trade-offs and impose

constraints on development.
○ Dependability vs time-to-market.
○ Better, faster, cheaper - pick two.
○ A good process allows planners to choose optimal

trade-offs.

Gregory Gay CSCE 747 - Spring 2016 9

Quality Process Structure

● Should be structured for:
○ Completeness

■ Appropriate activities are planned to detect each
important class of faults.

○ Timeliness
■ Faults are detected as early as possible.

○ Cost-effectiveness
■ Choose activities based on their balance of cost

versus effectiveness.

Gregory Gay CSCE 747 - Spring 2016 10

Quality as Part of Overall Process

● Quality activities intertwine with other
development activities.
○ Architectural design has an impact on the cost and

types of testing possible.
■ … and integration tests can be planned once the

architectural design is available.
○ An architectural model can be analyzed before code

is written, used to perform verification.
● Quality activities should not be reserved for

later in the development process.

Gregory Gay CSCE 747 - Spring 2016 11

Quality as Part of Overall Process

● Mutual benefits between quality and other
activities.
○ Planning tests while specifying requirements

identifies faults in requirements, allows refinement of
vague or contradictory requirements.

○ Planning tests during design suggests interfaces and
structures, identifies optimizations to structural
dependencies.

● Best predictor of cost to repair a fault is time
between introduction and detection.

Gregory Gay CSCE 747 - Spring 2016 12

The Cost of Requirement Faults

Cost ($)

Requirements Design Coding Unit Test Acceptance Test Operation

Easiest
Worst

$1 $1 $3
$6

$10 $10

$15

$40

$30

$70

$40

$1000

(From “Extra Time Saves Money”, Warren Kuffel)

Gregory Gay CSCE 747 - Spring 2016 13

Quality Goals

● Properties that the software must exhibit to
be “high quality.”

● Must be measurable.
● Must also be broken down into a set of

reasonable tasks that can be completed.
○ Balancing cost against attainment.

● Can be divided into external and internal
qualities.

Gregory Gay CSCE 747 - Spring 2016 14

Internal Quality Goals

● Primarily affect the development
organization.
○ Maintainability - the software can be updated over

time without degradation.
○ Reusability - parts of the software can be reused in

future projects with minimal changes.
○ Traceability - developers can trace code to related

requirements.
● Can impact external customers as well.

Gregory Gay CSCE 747 - Spring 2016 15

External Quality Goals

● Visible to the customer.
○ Dependability - how regularly does the system

function without crashing?
○ Latency - how long does it take to get output?
○ Usability - how easy is the software to use?
○ Safety - is the software able to avoid situations

where critical losses could occur?
● Can be divided into dependability and

usefulness properties.

Gregory Gay CSCE 747 - Spring 2016 16

External Quality Goals

● Dependability - does the software do what it
was intended to do?
○ If it is not dependable, it has a fault.

● Usefulness - can the software be used for
its intended job?
○ The software can be reliable and useless.
○ May be slow, have a bad interface, be missing

documentation or features.

Gregory Gay CSCE 747 - Spring 2016 16

Expensive to Maximize Goals

Costs rise exponentially if very high levels of an
goal are required.

Cost

Dependability
(Efficiency)
(Maintainability)
(etc.)

Gregory Gay CSCE 747 - Spring 2016 18

Quality is in the Eyes of Beholders

Good Documentation
Readable Code
Good Design
Reusability

Reliability
Correctness
EfficiencyFunctionality

Ease of Use
Ease of Learning

Low Cost
Portability

Increased Productivity

User
Customer

Maintainer

Gregory Gay CSCE 747 - Spring 2016 19

Planning and Monitoring

● Quality process requires coordination of
many different activities.

● Planning is needed to order, provision, and
coordinate all activities supporting a goal.

● Monitoring of a process is needed to
measure completion of a plan and to steer
and adjust the process.

Gregory Gay CSCE 747 - Spring 2016 20

Planning the Process

The Software Lifecycle

Concept
Formation

Requirements
Specification

Design

Implementation
and Testing

Release and
Maintenance

Gregory Gay CSCE 747 - Spring 2016 22

Planning the Process

● Planning involves scheduling activities,
allocating resources, and devising
milestones.

● Quality activities must be coordinated with
other development processes.
○ May constrain order that activities are completed.
○ May shape tasks to facilitate coordination.

● Quality planning begins at project inception
and follows cycles of formulation and
execution.

Gregory Gay CSCE 747 - Spring 2016 23

Planning the Process

● The quality process should follow a form
similar to the overall process:
○ Traditional - strictly separated phases, where an

activity only begins once the previous one is “done”.
○ Agile - development proceeds incrementally, and

activities are mixed.
■ (but focused on the current increment)

○ Mixed - increments or spirals with distinct phases.
○ As faults are cheaper to fix when detected earlier,

each development step in the process should be
paired with a verification step.

Gregory Gay CSCE 747 - Spring 2016 24

The Waterfall Model

Requirements
Definition

● Adaptation of
engineering
manufacturing process
to software.

● Only move on to
another phase when
the current phase is
complete.

System
Design

Implementation
and Unit
Testing

Integration
and System

Testing

Release and
Maintenance

Gregory Gay CSCE 747 - Spring 2016 25

The V-Model of Development

Requirements
Elicitation

System
Specification

Architectural
Design

Detailed
Design

Unit
Development
and Testing

Subsystem
Integration

Testing

System
Integration

Testing

Acceptance
Testing

Operation and
Maintenance

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plan

Unit Test Plan

Gregory Gay CSCE 747 - Spring 2016 26

The Incremental Model
Requirements

Definition

● Like waterfall, we only move on to
another phase when the current
phase is complete.

● Unlike waterfall, we produce
progressively more complete
builds of a system.

Feature Design

Implementation
and Unit Testing

Integration and
System Testing

A

A

B

A

B C

Gregory Gay CSCE 747 - Spring 2016 27

Cleanroom Process

● Incremental process that pairs development
and verification activities.
○ Stresses analysis over testing in earlier phases.
○ Testing is left for a near-release “certification” stage.

● Two cooperative teams - development and
quality assurance.

● Five major activities: specification, planning,
design and verification, quality certification,
and feedback.

Gregory Gay CSCE 747 - Spring 2016 28

Cleanroom Process

Gregory Gay CSCE 747 - Spring 2016 29

Specification

Function Usage

Incremental
Development

Planning

Requirements

Design Verification Statistical Test
Case Generation

Functional
Specification

Usage
Specification

Statistical Testing

Source Code Test Cases

Quality Certification
Model

Interfail Times

MTBF Statistics

Improvement
Feedback

SRET Process

● Software Reliability Engineered Testing
● Incremental process. Augments each

increment with testing activities.
● Defines two types of testing:

○ Development testing - used to find and remove faults
in software built on-site.

○ Certification testing - used to either accept or reject
outsourced software.

● Two planning, five core steps.
○ Executed in parallel with each increment.

Gregory Gay CSCE 747 - Spring 2016 30

SRET Process

Gregory Gay CSCE 747 - Spring 2016 31

Define “Necessary”
Reliability

Develop Operational Profiles

Prepare for Testing

Requirement
Specification

Design and
Implementation

System and
Acceptance Testing

Execute Tests and
Interpret Failure Data

The Iterative/Evolutionary Model

Initial
Concept Analyze

Requirements
Design

Iteration Implement
and Test
Iteration

Deliver Latest
Version

Elicit
Customer
Feedback

Done?
Yes

No

Gregory Gay CSCE 747 - Spring 2016 32

Wait… Aren’t incremental and
iterative the same thing?

● Incremental: Add new features to build a progressively
more complete system over time.

● Iterative: Deliver a series of progressively more
complete prototypes over time.

● Aren’t these the same thing?

Incremental is writing an essay one “perfect” sentence at a
time. Iterative is writing a complete rough draft, then
improving it through a complete revision.

Gregory Gay CSCE 747 - Spring 2016 33

The Agile Model

Product
Requirements

Req 3

Req 1

Req 4

Req 2

Priority

Requirements
Scheduled for

Iteration
New Software

Release

Iteration

Agile is not ad-hoc. An
iteration should have some
kind of structure.

During Iteration

Analyze
Requirements

Design
Iteration Implement

and Test
Iteration

Gregory Gay CSCE 747 - Spring 2016 34

Extreme Programming

● Extreme Programming model emphasizes:
○ Simplicity over generality.
○ Communication over structured organization.
○ Frequent changes over big releases.
○ Continuous testing over separation of roles and

responsibilities.
○ Continuous feedback over traditional planning.

● Prescribes rules regarding planning,
managing, designing, coding, and testing.

● Customers involved in requirement
specification and acceptance testing.

Gregory Gay CSCE 747 - Spring 2016 35

Testing in Extreme Programming

Gregory Gay CSCE 747 - Spring 2016 36

Generate
User Stories

Create Unit
Tests

Create
Acceptance

Tests

Implementation
and Unit
Testing

Review,
refine,
prioritize

Acceptance
Testing

New Release

Passed all unit tests.

Passed all
unit tests

Failed
acceptance tests

Pass
Next
version

Monitoring and Improving the
Process

Monitoring the Process

● Must monitor progress of all quality activities.
● Identify deviations from the plan as early as

possible and take corrective action.
● Relies on a plan that is realistic, organized,

and detailed.
○ Clear, unambiguous milestones.

● Process must be visible - able to be
monitored and assessed.

Gregory Gay CSCE 747 - Spring 2016 38

Process Visibility

● Activity completion must be distinguished
from activity termination.
○ Must include metrics of the thoroughness or

completeness of an activity.
● Must make decisions based on overall

picture of project progression.
○ Monitoring must collect aggregate measures about

activity results.
○ One measure - number of faults revealed and

removed, tracked against time.
■ Can be compared to past projects.

Gregory Gay CSCE 747 - Spring 2016 39

Detecting Anomalies

● Unexpected pattern in fault detection implies
problems in process.
○ Early decline in growth of fault detection usually

implies ineffective quality assurance efforts.
○ Growth rate that remains high implies that quality

goals may be met late or not at all.
■ May indicate weaknesses in fault removal, lack of discipline

in development.

● If faults remain open longer than expected,
there are process issues.
○ Confirmed when number of open faults does not

stabilize at acceptable level.
Gregory Gay CSCE 747 - Spring 2016 40

Improving the Process

● Many faults are rooted in process flaws.
● Such faults can be prevented by improving

the process.
● Root cause analysis (RCA) is a technique for

identifying and removing process faults.
○ Selects significant classes of faults and traces them

to their original causes.
○ Four steps: What, When, Why, and How

Gregory Gay CSCE 747 - Spring 2016 41

What are the Faults?

● Identify a class of important faults.
● Faults classified by severity and type.

○ Severity: cosmetic, moderate, severe, critical
○ Type does not use a predefined set of categories.

■ Categorization based on the project type and
expected sources of faults.

■ Granularity based on focus of development.
● If interface issues are the focus, apply finer classifications to

interface faults, and coarser to other types.

■ Classification scheme altered after identifying
and removing the cause of a fault type.

Gregory Gay CSCE 747 - Spring 2016 42

When?

● When did faults occur?
○ Can we determine when a fault was introduced?
○ During coding, design, specification, etc.

● When were the faults found?
○ Can we determine when the fault was found by a

quality process?
■ Integration testing, design inspection, etc.

Gregory Gay CSCE 747 - Spring 2016 43

Why did the Fault Occur?

● Trace representative faults back to causes.
○ Identify the “root” cause associated with most faults

in this class.
● Analysis attempts to explain the error that

led to the fault, then the cause of the error,
the cause of the cause, and so on.
○ Tracing is a manual process, requires experience

and judgement.
○ Each step requires information about the class of

fault and the process.
■ Acquired through inspection of documentation

and interviewing developers.Gregory Gay CSCE 747 - Spring 2016 44

Example

● Memory leaks are the most significant class
of faults.
○ Moderate frequency, severe impact, high cost to

diagnose and repair.
○ Result of forgetting to release memory in exception

handlers.
○ Result of being unable to determine what needs to

be cleaned up in exception handlers.
○ Result of the resource management scheme

assuming normal flow of control.
○ Root problem: exceptional conditions were an

afterthought dealt with late in design.Gregory Gay CSCE 747 - Spring 2016 45

How Could Faults be Prevented?

● Improve the process by removing root
causes or making early detection likely.

● Can involve minor tweaks to process…
○ Adding consideration of exceptional conditions to

design checklists.
● Or major overhaul…

○ Making explicit consideration of exceptional
conditions a part of all analysis and design steps.

● Requires judgement, should be followed-up
on in future projects.

Gregory Gay CSCE 747 - Spring 2016 46

We Have Learned

● Quality must be a part of all development
stages and must be planned for.

● Verification activities can be integrated into
all development processes, and planned as
part of each phase.

● The quality process must be monitored as it
executes to detect issues and correct them.

● RCA can be used to diagnose process
issues, and prevent them in future projects.

Gregory Gay CSCE 747 - Spring 2016 47

Next Time

● Presentations Begin
○ April 19, 21, 26, May 3
○ 12 minute talk.
○ Not much room for problems, so be prepared.

■ Bring slides on a thumb drive or e-mail them to me.

○ Attendance will be taken on all presentation dates.

● Homework:
○ Assignment 5 - April 25.

Gregory Gay CSCE 747 - Spring 2016 48

