Testing Fundamentals
CSCE 747 - Lecture 2 - 01/14/2016

Verification and Validation

e Verification - the process of ensuring that an
Implementation conforms to its specification.

o AKA: Under these conditions, does the software
work?

e \alidation - the process of ensuring that an

iImplementation meets the users’ goals.
o AKA: Does the software work in the real world?

e Proper V&V is the key to producing

dependable software.
o Testing is the primary verification activity.

Gregory Gay CSCE 747 - Spring 2016

We Will Cover

e \What is testing?

e Testing definitions:
o Let's get the language right.

e \What is a test?

e Principles of analysis and testing.

e Testing stages:
o Unit, Subsystem, System, and Acceptance Testing

Gregory Gay CSCE 747 - Spring 2016 3

Software Testing

e An investigation conducted to provide
information about system quality.
e Analysis of sequences of stimuli and

observations.
o We create stimuli that the system must react to.

o We record observations, noting how the system
reacted to the stimuli.

o We issue judgements on the correctness of of the
sequences observed.

Gregory Gay CSCE 747 - Spring 2016

What is a Test?

During testing, we instrument the system under test
and run test cases. J

Expected
Output

t Do they match?

Input SUT
7 Output \

To test, we need:

e Test Input - Stimuli fed to the system.
e Test Oracle - The expected output, and a way to check
whether the actual output matches the expected output.

Gregory Gay CSCE 747 - Spring 2016 5

Anatomy of a Test Case

e Input
o Any required input data.

e Expected Output (Oracle)

o What should happen, i.e., values or exceptions.

e [nitialization
o Any steps that must be taken before test execution.

e Test Steps

o Interactions with the system, and comparisons
between expected and actual values.

e Tear Down
o Any steps that must be taken after test execution.

Gregory Gay CSCE 747 - Spring 2016 6

Bugs? What are Those?

e Bug is an overloaded term - does it refer to
the bad behavior observed, the source code
problem that led to that behavior, or both?

e Failure
o An execution that yields an incorrect result.

e Fault
o The problem that is the source of that failure.
o For instance, a typo in a line of the source code.

e \When we observe a failure, we try to find the
fault that caused it.

Gregory Gay CSCE 747 - Spring 2016 7

Software Testing

e The main purpose of testing is to find faults:
“Testing is the process of trying to discover
every conceivable fault or weakness in a
work product” - Glenford Myers

e Tests must reflect normal system usage and
extreme boundary events.

Gregory Gay CSCE 747 - Spring 2016 8

Testing Scenarios

e Verification: Demonstrate to the customer

that the software meets the specifications.

o Tests tend to reflect “normal” usage.

o If the software doesn’t conform to the
specifications, there is a fault.

e Fault Detection: Discover situations where

the behavior of the software is incorrect.
o Tests tend to reflect extreme usage.

Gregory Gay CSCE 747 - Spring 2016 9

Axiom of Testing

"Program testing can be used
to show the presence of
bugs, but never their

absence.”
- Dijkstra

Gregory Gay CSCE 747 - Spring 2016 10

Black and White Box Testing

e Black Box (Functional) Testing
o Designed without knowledge of the program’s
iInternal structure and design.

o Based on functional and non-functional requirement
specifications.

e \White Box (Structural) Testing

o Examines the internal design of the program.
o Requires detailed knowledge of its structure.

o Tests typically based on coverage of the source

code (all statements/conditions/branches have been

executed)
Gregory Gay CSCE 747 - Spring 2016 11

Testing Stages

e Unit Testing
o Testing of individual methods of a class.
o Requires design to be final, so usually written and
executed simultaneously with coding of the units.
e Module Testing
o Testing of collections of dependent units.

o Takes place at same time as unit testing, as soon as
all dependent units complete.

e Subsystem Integration Testing
o Testing modules integrated into subsystems.

o Tests can be written once design is finalized, using
SRS document,

Gregory Gay CSCE 747 - Spring 2016 12

Testing Stages

e System Integration Testing

o Integrate subsystems into a complete system, then
test the entire product.

o Tests can be written as soon as specification is
finalized, executed after subsystem testing.

e Acceptance Testing

o Give product to a set of users to check whether it

meets their needs. Can also expose more faults.
o Also called alpha/beta testing.

o Acceptance planning can take place during
requirements elicitation.

Gregory Gay CSCE 747 - Spring 2016 13

The V-Model of Development

Operation and
Maintenance

v

%

~
Acceptance
Requirements | ____-------°77 , Test Plan S
Elicitation e VAN
7/ N\
s ™\ N
7 System AN
SR Integration | AN
System |2 .---" /| TestPlan ' “d Acceptance
Specification)/ \ Testing
I' Subsystem ‘\
\ K Integration Y
4 7 \
Architectural |/~ e =tan ' P MR
Desi 4 . Integration
esign I .
I Y Testing
\ / 3 /
I/
Detailed ! ISL;bsystt.em
R Design ntegration
L e Testing
y 4
Unit Test Plan - e
~~~~~~ Development
~~=»| and Testing

Gregory Gay

CSCE 747 - Spring 2016

14



Unit Testing

e Unit testing is the process of testing the

smallest isolated “unit” that can be tested.

o Often, a class and its methods.
o A small set of dependent classes.

e Test input should be calls to methods with
different input parameters.

e For a class, tests should:
o Test all “jobs” associated with the class.

o Set and check the value of all attributes associated

with the class.
o Put the class into all possible states.

Gregory Gay CSCE 747 - Spring 2016 15



Unit Testing - WeatherStation

When writing unit tests for

WeatherStation WeatherStation, we need:
identifier e Set and check identifier.
testLink() e Tests for each “job” performed by
reportWeather() the ClaSS
reportStatus() ]
restart(instruments) o Methods that work together to
SIS i) perform that class’ responsibilities.
reconfigure(commands) .

e Tests that hit each outcome of

each “job” (error handling, return
conditions).

Gregory Gay CSCE 747 - Spring 2016 16



Unit Testing - Object Mocking

Components may depend on WeatherData

other, unfinished (or untested) femperature

components. You can mock windDirection

those components. jastRoadingTime

e Mock objects have the raizetime)
same interface as the real
component, but are hand- | shonm
created to simulate the real Mock_Thermometer
component. % i

e (Can also be used to get)
simulate abnormal L e— J
operation or rare events. ;

Gregory Gay CSCE 747 - Spring 2016 17



Subsystem Testing

e Most software works by combining multiple,
iInteracting components.

o |n addition to testing components independently, we
must test their integration.

e Functionality performed across components
Is accessed through a defined interface.
o Therefore, integration testing focuses on showing

that functionality accessed through this interface
behaves according to the specifications.

Gregory Gay CSCE 747 - Spring 2016 18



Subsystem Testing

We have a subsystem made Test Cases

up of A, B, and C. We have
performed unit testing... AL
e However, they work together

to perform functions.
e Therefore, we apply test A " B
cases not to the classes, but
to the interface of the \
subsystem they form. C
e FErrors in their combined

behavior result are not
caught by unit testing.

Gregory Gay CSCE 747 - Spring 2016 19



Interface Types

e Parameter Interfaces
o Data is passed from one component to another.

o All methods that accept arguments have a
parameter interface.

o If functionality is triggered by a method call, test
different parameter combinations to that call.

e Procedural Interfaces

o When one component encapsulates a set of
functions that can be called by other components.

o Controls access to subsystem functionality. Thus, is
important to test rigorously.

Gregory Gay CSCE 747 - Spring 2016 20



Interface Types

e Shared Memory Interfaces
o A block of memory is shared between components.

o Data is placed in this memory by one subsystem and
retrieved by another.

o Common if system is architected around a central
data repository.

e Message-Passing Interfaces
o Interfaces where one component requests a service
by passing a message to another component. A

return message indicates the results of executing the

service.
Common in pargllelsystems,client-server systems. ,,

Gregory C%y



Interface Errors

e |nterface Misuse
o A calling component calls another component and makes
an error in the use of its interface.
o Wrong type or malformed data passed to a parameter,

parameters passed in the wrong order, wrong number of
parameters.

e Interface Misunderstanding
o Incorrect assumptions made about the called component.
o A binary search called with an unordered array.

e Timing Errors

o In shared memory or message passing - producer of data
and consumer of data may operate at different speeds,
and may access out of data information as a result.

Gregory Gay CSCE 747 - Spring 2016 22



System Testing

Systems are developed as interacting
subsystems. Once units and subsystems are
tested, the combined system must be tested.

e Advice about interface testing still important here (you
interact with a system through some interface).
e Two important differences:

o Reusable components (off-the-shelf systems) need
to be integrated with the newly-developed
components.

o Components developed by different team members
or groups need to be integrated.

Gregory Gay CSCE 747 - Spring 2016 23



Acceptance Testing

Once the system is internally tested, it should
be placed in the hands of users for feedback.

e Users must ultimately approve the system.

e Many faults do not emerge until the system

IS used in the wild.

o Alternative operating environments.
o More eyes on the system.
o Wide variety of usage types.

e Acceptance testing allows users to try the
system under controlled conditions.

Gregory Gay CSCE 747 - Spring 2016 24



Acceptance Testing Types

Three types of user-based testing:
e Alpha Testing

o A small group of users work closely with
development team to test the software.
e Beta Testing
o A release of the software is made available to a
larger group of interested users.
e Acceptance Testing

o Customers decide whether or not the system is
ready to be released.

Gregory Gay CSCE 747 - Spring 2016

25



Acceptance Testing Stages

e Define acceptance criteria

o Work with customers to define how validation will be
conducted, and the conditions that will determine
acceptance.

e Plan acceptance testing

o Decide resources, time, and budget for acceptance
testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

e Derive acceptance tests.

o Design tests to check whether or not the system is
acceptable. Test both functional and non-functional
characteristics of the system.

Gregory Gay CSCE 747 - Spring 2016 26



Acceptance Testing Stages

e Run acceptance tests
o Users complete the set of tests. Should take place in

the same environment that they will use the
software. Some training may be required.

e Negotiate test results
o Itis unlikely that all of the tests will pass the first

time. Developer and customer negotiate to decide if
the system is good enough or if it needs more work.

e Reject or accept the system

o Developers and customer must meet to decide

whether the system is ready to be released.
Gregory Gay CSCE 747 - Spring 2016 27



Dependability Properties

e \When performing verification, we want to

prove four things about the system:
o Thatitis correct.

o That itis reliable.

o Thatitis safe.

o Thatis is robust.

Gregory Gay CSCE 747 - Spring 2016 28



Correctness

e A program is correct if it is consistent with
its specifications.

o A program cannot be 30% correct. It is either correct
or not correct.

o A program can easily be shown to be correct with
respect to a bad specification. However, it is often

Impossible to prove correctness with a good,
detailed specification.

o Correctness is a goal to aim for, but is rarely
provably achieved.

Gregory Gay CSCE 747 - Spring 2016 29



SCYET114Y

e A statistical approximation of correctness.
e Reliability is a measure of the likelihood of
correct behavior from some period of

observed behavior.
o Time period, number of system executions

o Measured relative to a specification and a usage
profile (expected pattern of interaction).

m Reliability is dependent on how the system is
iInteracted with by a user.

Gregory Gay CSCE 747 - Spring 2016 30



e Two flaws with correctness/reliability:

o 3Success is relative to the strength of the
specification.

o Severity of a failure is not considered. Some failures
are worse than others.
e Safety is the ability of the software to avoid

hazards.

o Hazard = any undesirable situation.
o Relies on a specification of hazards.

m Butis only concerned with avoiding hazards, not
other aspects of correctness.

Gregory Gay CSCE 747 - Spring 2016 31



Robustness

e Correctness and reliability are contingent on
normal operating conditions.

e Software that is “correct” may still fail when
the assumptions of its design are violated.
How it fails matters.

e Software that “gracefully” fails is robust.
o Consider events that could cause system failure.

o Decide on an appropriate counter-measure to
ensure graceful degradation of services.

Gregory Gay CSCE 747 - Spring 2016 32



Dependability Property Relations

failures can occur rarely catastrophic failures can occur

J Reliable but not correct: Robust but not safe: }\
|

Correct but not safe: -’f ‘\,l Safe but not correct:
the specification is inadequate annoying failures can occur

Gregory Gay CSCE 747 - Spring 2016 33



Principles of
Analysis and Test



Basic Principles

e Engineering disciplines are guided by core
principles.

o Provide rationale for defining, selecting, and
applying techniques and methods.

e Testing and analysis are guided by six
principles:
o Sensitivity, redundancy, restriction, partition,
visibility, and feedback.

Gregory Gay CSCE 747 - Spring 2016 35



Sensitivity

e Faults may lead to failures, but faulty
software might not always fail.
e Sensitivity Principle: It is better to fail every

time rather than only on some executions.
o Earlier a fault is detected, the lower the cost to fix.
m Especially once software has been released.

o A fault that triggers a failure every execution is
unlikely to survive testing.

o The goal of sensitivity - try to make faults easier to
detect by making them cause failure more often.

Gregory Gay CSCE 747 - Spring 2016 36



Sensitivity

e Principle can be applied at design & code,
testing, and environmental levels.
o Design & Code: Change how the program reacts to

faults.

o Testing: Choose a technique more likely to force a
failure when a fault exists.

o Environmental: Reduce the impact of environmental
factors on the results.

Gregory Gay CSCE 747 - Spring 2016 37



Sensitivity - Design

e Take operations

strcpy (target, source) ;

// May cause failure if source

known to potentially == =0 e
cause failures and void stringCopy (char *target, comst

char *source, int howBig) {

EBT1ESLJF€3 tf1€3t tr1€33/ assert(strlen(source) < howBig) ;
Wi” fail When used Jé(/DOCil:g];'whether source string is

improperly.
e EX: C string
manipulation.

Gregory Gay

strcpy (target, source) ;
// If length ok, copy the string.
}

CSCE 747 - Spring 2016

38



Sensitivity - Test and Analysis

e Choose fault classes and favor techniques that
cause faults to manifest in failures.

e Deadlocks/race conditions:
o Testing cannot try enough combinations.

o Model checking/reachability analysis are suited to
these problems.

e Test adequacy criteria specify rules on how
certain types of statements are executed.

o Some are correlated to types of faults - i.e., condition

coverage is likely to uncover problems with boolean
expressions.

Gregory Gay CSCE 747 - Spring 2016 39



Redundancy

e If one part of a software artifact constrains
the content of another, it is possible to check
them for consistency.

e In testing, we want to detect differences
between intended and actual behavior. We
can better do this by adding redundant
Statements of intent.

o Make clear how code should be executed, then
ensure that your intentions are not violated.

Gregory Gay CSCE 747 - Spring 2016

40



Redundancy

e EX: Type Checking

o Type declaration is a statement of intent (this
variable is an integer).
m Redundant with how it is used in the code.

o Type declaration constrains the code, so a
consistency check can be applied.

e Java requires that methods explicitly declare
exceptions that can be thrown.

e Many analysis tools check consistency
between code and other project artifacts.

Gregory Gay CSCE 747 - Spring 2016 41



Restriction

e \When there is no effective or cheap way to
check a property, sometimes one can solve
a different, more restrictive property.

o Or limit the check to a smaller, more restrictive set
of programs.

e If the restrictive property encompasses the
complex property, then we know that the

complex property will hold.
o Thatis, being overprotective avoids bad situations.

Gregory Gay CSCE 747 - Spring 2016 42



Restriction

static void questionable/{
int k;

for (int 1i=0; 1 < 10;
++1) {

1f (condition (1)) {
k=0;
telse(

k += 1;

Can k ever be
uninitialized the first time
i is added to it?

This is an undecidable
guestion.

However, Java avoids
this situation by
enforcing a simpler
property.

o No paths can compile

with potentially
uninitialized references.

Gregory Gay CSCE 747 - Spring 2016 43



Partition

e AKA: Divide and conquer.
e The best way to solve a problem is to
partition it into smaller problems to be

solved independently.

o Divide testing into stages (unit, subsystem, system).

o Many analysis tools built around construction and
analysis of a model.

m First, simplify the system to make proof feasible.
m Then, prove the property on the model.

Gregory Gay CSCE 747 - Spring 2016 44



Visibility and Observability

e Visibility is the ability to measure progress
or status against goals.

o Clear knowledge about the current state of
development or testing.
o Ability to measure dependability against targets.

e Observability is the ability to extract useful
information from a software artifact.

o Be able to understand an artifact, to make changes
to it, and to observe and understand its execution.

o Equality checks, ability to convert data structures to
text encodings.

Gregory Gay CSCE 747 - Spring 2016 45



Feedback

e Be able to apply lessons from experience in
process and techniques.

o |n systematic inspection and code walkthroughs, use
past experience to write and refine checklists.

o In testing, prioritize test efforts based on likelihood of
fault classes.

o Use experience in acceptance testing in creating
user surveys.

Gregory Gay CSCE 747 - Spring 2016 46



We Have Learned

e \What is testing?

e Testing terminology and definitions.

e Testing stages include unit testing,
subsystem testing, system testing, and
acceptance testing.

e \We want testing to result in systems that are
correct, reliable, safe, and robust.

Gregory Gay CSCE 747 - Spring 2016 47



We Have Learned

e Six principles guide analysis and testing:

©)

O O O O O

Gregory Gay

Sensitivity: better to fail every time than sometimes.
Redundancy: make intentions explicit.

Restriction: make the problem easier.

Partition: divide and conquer.

Visibility: make information accessible.

Feedback: apply lessons from experience to refine
techniques and approaches.

CSCE 747 - Spring 2016 48



Next Time

e Finite Models

o Representations of programs that we can use for
analysis.

e Reading:
o Chapter 5
e Team selection - due January 21st.

Gregory Gay CSCE 747 - Spring 2016 49



