
Modeling Software
CSCE 747 - Lecture 3 - 01/19/2016

Models and Software Analysis

● Before and while building products, engineers
analyze models to address design questions.

● Software is no different.
● Models address two problems:

○ Analysis and testing cannot wait until a product is
finished.

○ The finished product is often too complex to analyze
“as-is”.

Gregory Gay CSCE 747 - Spring 2016 2

Today’s Goals

● Building behavioral models.
○ Directed graphs.
○ Control-Flow graphs.
○ Call graphs.
○ Finite state machines.

● Properties of a good model.

Gregory Gay CSCE 747 - Spring 2016 3

Behavior Modeling

● Abstraction - simplifying a problem by
identifying important aspects, focusing on
those, and pretending other details don’t exist.

● The key to solving many computing problems.
○ Solve a simpler version, then apply to the big problem.

● A model is a simplified representation of an
artifact, focusing on one facet of that artifact.
○ The model ignores all other elements of that artifact.

Gregory Gay CSCE 747 - Spring 2016 4

Models

● A model is a simplified representation of an
artifact, focusing on one facet of that artifact.
○ The model ignores all other elements of that artifact.

● By abstracting away unnecessary details,
extremely powerful analyses can be
performed.
○ Proofs of correctness, security analysis, deadlock

detection, automated verification.
● Model must preserve enough of the artifact

that results hold.

Gregory Gay CSCE 747 - Spring 2016 5

Model Properties

To be useful, a model must be:
● Compact

○ Models must be simplified enough to be analyzed.
○ “How simple” depends on how it will be used.

● Predictive
○ Represent the real system well enough to distinguish

between good and bad outcomes of analyses.
○ No single model usually represents all characteristics

of the system well enough for all types of analysis.

Gregory Gay CSCE 747 - Spring 2016 6

Model Properties

To be useful, a model must be:
● Meaningful

○ Must provide more information than success and
failure. Must allow diagnoses of the causes of failure.

● Sufficiently General
○ Models must be practical for use in the domain of

interest.
○ An analysis of C programs is not useful if it only works

for programs without pointers.

Gregory Gay CSCE 747 - Spring 2016 7

Directed Graphs

A directed graph is composed
of a set of nodes N and a
relation E on the set (a set of
ordered pairs, called edges).
● Nodes represent program

entities.
● Edges represent relations

between entities.
○ i.e., flow of execution.

Gregory Gay CSCE 747 - Spring 2016 8

A

B C

Finite Abstraction

● A program execution can be viewed as a
sequence of states alternating with actions.

● Software “behavior” is a sequence of state-
action-state transitions.

● The set of all possible behavior sequences is
often infinite.
○ Called the “state space” of the program.
○ Models of execution are abstractions of the program’s

state space.

Gregory Gay CSCE 747 - Spring 2016 9

Abstraction Functions

● We can link a state in the real space of
execution to a model state through an
abstraction function.
○ The abstraction function translates the real program to

a model by stripping away details.
○ The abstraction function lumps together states that

only differ through details abstracted from the model.
This has two effects:
■ Sequences of transitions are collapsed into fewer

execution steps.
■ Nondeterminism can be introduced.

Gregory Gay CSCE 747 - Spring 2016 10

Abstraction Functions

This has two effects:
● Sequences of

transitions are
collapsed into fewer
execution steps.

● Nondeterminism
can be introduced.

Gregory Gay CSCE 747 - Spring 2016 11

x = 0;
y = 0;
z = 0;

x = 0;
y = 0;
z = 1;

x = 0;
y = 1;
z = 0;

x = 0;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program:

Model:

x = 0;
y = 0;
z = 0;

x = 0;
y = 1;
z = 0;

x = 0;
y = 0;
z = 1;

x = 1;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program: Model:

x = 1;
y = 1;

Types of Models

● Two main “views” of program behavior:
○ Source Code-Based

■ Visualization of paths of execution (where states
are code locations)

■ Often used to guide test generation.
○ Behavior-Based

■ Mapping of functionality to a series of abstract
program states. Not directly linked to code
statements.

● Models are also used to analyze required
development effort, usability, etc.

Gregory Gay CSCE 747 - Spring 2016 12

Code-Based Models

Control-Flow Graphs

● A directed graph representing the flow of
control through the program.
○ Nodes represent sequential blocks of program

commands.

○ Edges connect nodes in the sequence they are

executed. Multiple edges indicate conditional
statements (loops, if statements, switches).

■ The graph abstracts concrete execution details

(variable values), so it depicts paths that are
defined, but impossible to actually execute.Gregory Gay CSCE 747 - Spring 2016 14

1 if (1==x) {
2 y=45;
3 }
4 else {
5 y=23456;
6 }
7 /* continue */

If-then-else

y=45; y=23456;

/* continue */

1==x

T F

Gregory Gay CSCE 747 - Spring 2016 15

1 while (1<x) {
2 x--;
3 }
4 /* continue */

Loop

x--;
/* continue */

1<x

T F

Gregory Gay CSCE 747 - Spring 2016 16

Case

1 switch (test) {
2 case 1 : ...
3 case 2 : ...
4 case 3 : ...
5 }
6 /* continue */

case 1... case 3...

/* continue */

test

case 2...

Gregory Gay CSCE 747 - Spring 2016 17

Basic Blocks
● Nodes represent basic

blocks - a set of
sequentially executed
instructions with a single
entry and exit point.

● Typically a set of
adjacent statements, but
a statement might be
broken up into multiple
blocks to model control
flow in the statement.

Gregory Gay CSCE 747 - Spring 2016 18

for(int i=0; i < 10; i++){

sum += i;

}

int i = 0;

i < 10
F

sum += i;
i++;

T

Control Flow Graph Example
public static String collapseNewlines(String

argSt){

char last = argStr.charAt(0);

StringBuffer argBuf = new StringBuffer();

for(int cldx = 0; cldx < argStr.length();

cldx++){

char ch = argStr.charAt(cldx);

if (ch != ‘\n’ || last != ‘\n’){

argBuf.append(ch);

last = ch;

{

}

return argBuf.toString();

}

Gregory Gay CSCE 747 - Spring 2016 19

collapseNewlines(String argSt)

char last = argStr.charAt
(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.
length();

char ch = argStr.charAt(cldx);

T
return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

Linear Code Sequences and Jumps
● Often, we want to reason about the

subpaths that execution can take.
● A subpath from one branch of control

to another is called a LCSAJ.
● The LCSAJs for this example:

Gregory Gay CSCE 747 - Spring 2016 20

From To Sequence of Basic Blocks

entry j1 b1, b2, b3

entry j2 b1, b2, b3, b4, b5

entry j3 b1, b2, b3, b4, b5, b6, b7

j1 return b8

j2 j3 b7

j3 j2 b3, b4, b5

j3 j3 b3, b4, b5, b6, b7

collapseNewlines(String argSt)

char last = argStr.charAt
(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.
length();

char ch = argStr.charAt(cldx);

T

return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

J1

J2

J3

B1

B2

B3

B4

B5

B6 B7

B8

Activity 1 - Control-Flow Graph
Draw a control-flow graph for the following code:
1. int abs(int A[], int N)
2. {
3. int i=0;
4. while (i< N)
5. {
6. if (A[i]<0)
7. A[i] = - A[i];
8. i++;
9. }
10. return(1);
11.}

Gregory Gay CSCE 747 - Spring 2016 21

Activity 1 - Solution

1. int abs(int A[], int N)
2. {
3. int i=0;
4. while (i< N)
5. {
6. if (A[i]<0)
7. A[i] = - A[i];
8. i++;
9. }
10. return(1);
11.}

Draw a control-flow graph for the following code:

i++

 i<N

A[i]<0

A[i] = - A[i];

return(1)

True
False

True

False

i=0

Gregory Gay CSCE 747 - Spring 2016 22

Call Graphs
Directed graph representing interprocedural control-flow,
where nodes represent procedures and edges represent
“calls” relation.

Gregory Gay CSCE 747 - Spring 2016 23

StringUtils.collapseNewlines(String)

String.charAt(int) StringBuffer.toString()StringBuffer.append(char)String.length()

Polymorphism and Call Graphs

● In OO languages, subclasses inherit a data
type, methods, and variables from a parent

● Subclasses can override behavior of inherited
methods. You cannot be sure which class is
assigned to a variable at runtime.

● In the call graph, you can either model all
subclasses that could be invoked, or just the
declared class.
○ Latter is easier, but risks omitting execution paths.

Gregory Gay CSCE 747 - Spring 2016 24

Call Graphs
public class C{

public static C cFactory(String kind){

if (kind==”C”) return new C();

if (kind==”S”) return new S();

return null;

}

void foo(){

System.out.println(“Hello.”);

}

public static void main(String args[]){

(new A()).check();

}

}

class S extends C{

void foo(){

System.out.println(“World.”);

}

}

Gregory Gay CSCE 747 - Spring 2016 25

A.check()

C.foo() S.foo()C.cFactory(String)

class A{

void check(){

C myC = C.cFactory(“S”);

myC.foo();

}

}

Behavioral Models

Finite State Machines

● A common method of
modeling behavior of a
system.

● A directed graph: nodes
represent states, edges
represent transitions.

● Not a substitute for a
program, but a way to
explore and understand a
program.
○ Can even build a model

for each function.

Gregory Gay CSCE 747 - Spring 2016 27

Some Terminology

● Event - Something that happens at a point in time.
○ Operator presses a self-test button on the device.
○ The alarm goes off.

● Condition - Describes a property that can be true or false
and has duration.
○ The fuel level is high.
○ The alarm is on.

● State - An abstract description of the current value of an
entity’s attributes.
○ The controller is in the “self-test” state after the self-test button

has been pressed, and leaves it when the rest button has been
pressed.

○ The tank is in the “too-low” state when the fuel level is below the
set threshold for N seconds.

Gregory Gay CSCE 747 - Spring 2016 28

States, Transitions, and Guards

● State - An abstract description of the current
value of an entity’s attributes.

● States change in response to events.
○ A state change is called a transition.

● When multiple responses to an event
(transitions triggered by that event) are
possible, the choice is guided by the current
conditions.
○ These conditions are also called the guards on a

transition.

Gregory Gay CSCE 747 - Spring 2016 29

State Transitions

Transitions are labeled in the form:
event [guard] / activity

● event: The event that triggered the transition.
● guard: Conditions that must be true to choose this

transition.
● activity: Behavior exhibited by the object when this

transition is taken.
● All three are optional.

○ Missing Activity: No output from this transition.
○ Missing Guard: Always take this transition if the event

occurs.
○ Missing Event: Take this transition immediately.

Gregory Gay CSCE 747 - Spring 2016 30

State Transition Examples

Transitions are labeled in the form:
event [guard] / activity

● The controller is in the “self-test” state after the
self-test button has been pressed, and leaves
it when the rest button has been pressed.
○ Pressing self-test button is an event.

● The tank is in the “too-low” state when the fuel
level is below the set threshold for N seconds.
○ Fuel level below threshold for N seconds is a guard.

Gregory Gay CSCE 747 - Spring 2016 31

Example: Gumball Machine

Waiting for
Quarter

Quarter
Inserted

user inserts quarteruser ejects quarter

Gumball
Sold

user turns crank

Out of
Gumballs

[gumballs > 0]

[gumballs -1 > 0] /
dispense gumball

[gumballs -1 = 0] / dispense gumball

Gregory Gay CSCE 747 - Spring 2016 32

More on Transitions

Guards must be
mutually exclusive

If an event occurs and
no transition is valid,
then the event is
ignored.

last bill ejected
[balance > 0 &&
balance >= needed]

Able to
Purchase

last bill ejected
[balance = 0]

Waiting for
Money

More Money
Needed

last bill ejected
[balance > 0 &&
balance < needed]

Gregory Gay CSCE 747 - Spring 2016 33

Internal Activities

States can react to
events and conditions
without transitioning
using internal activities.

Special events: entry
and exit.
Other activities occur
until a transition occurs.
Similar to a self-
transition, but entry
and exit will not be re-
triggered without using
an actual self-transition.

Typing
entry / highlight all
exit / update field
character entered / add to field
help requested [verbose] / open help page
help requested [minimal] / update status bar

Gregory Gay CSCE 747 - Spring 2016 34

Activity - Secret Panel Controller

You must design a state machine for the controller of a
secret panel in Dracula’s castle.

Dracula wants to keep his valuables in a safe that’s hard to
find. So, to reveal the lock to the safe, Dracula must
remove a strategic candle from its holder. This will reveal
the lock only if the door is closed. Once Dracula can see
the lock, he can insert his key to open the safe. For extra
safety, the safe can only be opened if he replaces the
candle first. If someone attempts to open the safe without
replacing the candle, a monster is unleashed.

Gregory Gay CSCE 747 - Spring 2016 35

Activity Solution

Wait

Open

Lock
Revealed

Monster
Unleashed

candle removed [door closed] /
reveal lock

key turned [candle in] /
open safe

safe closed / close
panel

key turned [candle out] /
release monster

Gregory Gay CSCE 747 - Spring 2016 36

What Can We Do With This Model?

Now that we have a model, we can reason about
our requirements and specifications.

Specification

public static void Main(){
System.out.println

(“Hello world!”);
}

If the model satisfies
the specification...

And If the model is well-
formed, consistent, and
complete.

And If the model accurately
represents the program.

Gregory Gay CSCE 747 - Spring 2016 37

Models require abstraction. Useful for
requirements analysis, but may not reflect
operating conditions.

Challenge - Does the Model Match
the Program?

SimplePacing

sense
Voltage
Sensor

Clock Module

timeIn /
timeOut

Other
Subsystems

In the model:
● Binary input

In the implementation:
● Voltage reading compared

to calculated threshold

In the model:
● input time = output time
● Operations take place

instantly.
In the implementation:
● Operations take time to

compute.
● Clock drift may impact time.
Gregory Gay CSCE 747 - Spring 2016 38

Model Refinement

● Models have to balance precision with efficiency.
● Abstractions that are too simple may introduce spurious

failure paths that may not be in the real system.
● Models that are too complex may render model checking

infeasible due to resource exhaustion.

Gregory Gay CSCE 747 - Spring 2016 39

We Have Learned

● Often, the source code of the software is too
complex to analyze in detail.

● Instead, we must create abstract models of the
facets of a program we want to examine.

● Models can be based on source code and
execution paths or on specifications of
functional behavior.

● Models can be used by sophisticated
verification techniques to prove that the
program obeys the specifications.

Gregory Gay CSCE 747 - Spring 2016 40

Next Time

● Functional Testing
○ Building tests using the requirement specification.
○ Reading: Chapter 10

● Homework:
○ Team Selections due Thursday (11:59 PM)

■ e-mail me with your team roster (or to get placed)
○ Reading assignment:

■ James Whittaker. The 10-Minute Test Plan.
■ Due January 26 (11:59 PM)

Gregory Gay CSCE 747 - Spring 2016 41

Reading Assignment

● James Whittaker. The 10-Minute Test Plan.
● Individual assignment.
● Read the paper and turn in a one-page write-up:

○ Summary of the paper.
○ Your opinion on the work.

■ Is it applicable to real-world software?
■ Is it a useful approach?
■ Where does it fall short?

○ Your thoughts on how this could be improved and
extended.

Gregory Gay CSCE 747 - Spring 2016 42

