
Functional Testing
CSCE 747 - Lecture 4 - 01/21/2016

How do you come up with
test cases?

Test Plans

● Plan for how we will test the system.
○ What is being tested (units of code, features).
○ When it will be tested (required stage of completion).
○ How it will be tested (what scenarios do we run?).
○ Where we are testing it (types of environments).
○ Why we are testing it (what purpose does this test

serve?).
○ Who will be responsible for writing test cases

(assign responsibility).

Gregory Gay CSCE 747 - Spring 2016 3

Where Does a Test Plan Come
From?

● The first stage of software development is
requirements specification.
○ Requirements = Properties that must be met by the

final program.
○ Requirement Specification = How we the program

will fulfill those properties.
● Verification ensures that the program

conforms to its requirement specifications.
● Tests can be derived directly from these

specifications.

Gregory Gay CSCE 747 - Spring 2016 4

Functional Testing

● Process of deriving tests from the
requirement specifications.
○ Typically the baseline technique for designing test

cases. Can begin as part of requirements
specification, and continue through each level of
design and implementation.

○ Basis of verification - builds evidence that the
implementation conforms to its specification.

○ Effective at finding some classes of faults that elude
code-based techniques.
■ i.e., incorrect outcomes and missing functionality

Gregory Gay CSCE 747 - Spring 2016 5

Partitioning

Requirement Specification

Test Cases

?

Gregory Gay CSCE 747 - Spring 2016 6

● Functional testing is based
on the idea of partitioning.
○ You can’t actually test individual

requirements in isolation.
○ First, we need to partition the

specification and software into
features that can be tested.

○ Not all inputs have the same
effect.

○ We can partition the outputs of a
feature into the possible
outcomes.
■ and the inputs, by what

outcomes they cause (or
other potential groupings).

Creating Requirements-Based Tests

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and
testable requirements.

Figure out what functions can be
tested in (relative) isolation.

What are the outcomes of the
feature, and which input classes

will trigger them?

Identify abstract
classes of test cases.

Instantiate concrete
input/output pairs.

Gregory Gay CSCE 747 - Spring 2016 7

Specification Verifiability

“The system should be easy to use by experienced
engineers and should be organized in such a way
that user errors are minimized.”

● Problem is the use of vague terms such as
“errors shall be minimized.”

● The error rate must be quantified

Gregory Gay CSCE 747 - Spring 2016 8

Example Specifications

● After a high temperature is detected, an
alarm must be raised quickly.

● Novice users should be able to learn the
interface with little training.

How in the world do you make these
specifications verifiable?

Gregory Gay CSCE 747 - Spring 2016 9

Test the Requirement

After a high temperature is detected, an alarm
must be raised quickly.

Test Case 1:
● Input:

○ Artificially raise the temperature above the high
temperature threshold.

● Procedure:
○ Measure the time it takes for the alarm to come on.

● Expected Output:
○ The alarm shall be on within 2 seconds.

Gregory Gay CSCE 747 - Spring 2016 10

Test the Requirement

Novice users should be able to learn the interface with little
training.

Test Case 2:
● Input:

○ Identify 10 new users and put them through the training
course (maximum length of 6 hours)

● Procedure:
○ Monitor the work of the users for 10 days after the

training has been completed
● Expected Output:

○ The average error rate over the 10 days shall be less
than 3 entry errors per 8 hours of work.

Gregory Gay CSCE 747 - Spring 2016 11

“Fixed” Specifications

● Original: After a high temperature is detected, an
alarm must be raised quickly.

● New: When the temperature rises over the
threshold, the alarm must activate within 2 seconds.

● Original: Novice users should be able to learn the
interface with little training.

● New: New users of the system shall make less than
2 entry mistakes per 8 hours of operation after 6
hours of training.

Gregory Gay CSCE 747 - Spring 2016 12

Detailed is Not Always Testable

● Number of invalid attempts to enter the PIN
before a user is suspended.
○ This count is reset when a successful PIN entry is

completed for the user.
○ The default is that the user will never be suspended.
○ The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)

Gregory Gay CSCE 747 - Spring 2016 13

How Many Tests Do You Need?

Testing a single requirement specification does
not mean writing a single test.
● You normally have to write several tests to

ensure that the requirement holds.
○ What are the different conditions that the

requirement must hold under?
● Maintain traceability links from tests to the

requirements they cover.

Gregory Gay CSCE 747 - Spring 2016 14

Independently Testable Feature

● Requirements are difficult to test in isolation.
However, the system can usually be
decomposed into the functions it provides.

● An independently testable feature is a
well-defined function that can be tested in
(relative) isolation.

● Identified to “divide and conquer” the
complexity of functionality.

Gregory Gay CSCE 747 - Spring 2016 15

Units and Features

● Executable tests are typically written in
terms of blocks of code (small “units” that
can be executed).
○ Until we have code, we do not know what the units

are.
● An independently testable feature is a

capability of the software.
○ May not correspond to any one unit of code.
○ Can be at the class, subsystem, or system level.

Gregory Gay CSCE 747 - Spring 2016 16

Features and Parameters

Tests for features must be described in terms
of all of the parameters and environmental
factors that influence the feature’s execution.
● What are the inputs to that feature?

○ User registration on a website might take in:
■ (firstName, lastName, dateOfBirth, eMail)

● Consider implicit environmental factors.
○ Registration also requires a user database.

■ The existence and contents of that database influence
execution.

Gregory Gay CSCE 747 - Spring 2016 17

Parameter Characteristics

The key to identifying tests is in understanding
how the parameters are used by the feature.
● Type information is helpful.

○ firstName is a string, the database contains
UserRecord structs.

● … but context is important.
○ If the database already contains an entry for that

combination of fields, registration should be rejected.
○ dateOfBirth is a collection of three integers, but

those integers are not used for any arithmetic
operations.

Gregory Gay CSCE 747 - Spring 2016 18

Examples

Class Registration System
What are some independently testable
features?

● Add class
● Drop class
● Modify grading scale
● Change number of credits
● Graphical interface of registration page

Gregory Gay CSCE 747 - Spring 2016 19

Examples

Adding a class
What are the parameters?

● Course number to add
● Grading basis
● Student record
● What about a course database? Student

record database?

Gregory Gay CSCE 747 - Spring 2016 20

Independently Testable Features

What are three independently testable features
of a spreadsheet?

Gregory Gay CSCE 747 - Spring 2016 21

Identifying Representative Values

● We know the
features. We know
their parameters.

● What input values
should we pick?

● What about
exhaustively
trying all inputs?

Test Input Data

Test Output Results

Program

Gregory Gay CSCE 747 - Spring 2016 22

Exhaustive Testing

Take the arithmetic
function for the
calculator:
add(int a, int b)

● How long would it
take to exhaustively
test this function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

Gregory Gay CSCE 747 - Spring 2016 23

Not all Inputs are Created Equal

● We can’t exhaustively
test any real program.
○ We don’t need to!

● Some inputs are better
than others at revealing
faults, but we can’t know
which in advance.

● Tests with different input
than others are better
than tests with similar
input.

Test Input Data

Test Output Results

Program

Ie

Oe

Gregory Gay CSCE 747 - Spring 2016 24

Random Testing

● Pick inputs uniformly
from the distribution of
all inputs.

● All inputs considered
equal.

● Keep trying until you
run out of time.

● No designer bias.
● Removes manual

tedium.
Gregory Gay CSCE 747 - Spring 2016 25

Why Not Random?

Gregory Gay CSCE 747 - Spring 2016 26

Input Partitioning

Test Input Data

Test Output Results

Program

Ie

Oe

Faults are sparse in the
space of all inputs, but
dense in some parts of the
space where they appear.

By systematically trying
input from each partition,
we will hit the dense fault
space.

Gregory Gay CSCE 747 - Spring 2016 27

Equivalence Class

● We want to divide the input domain into
equivalence classes.
○ Inputs from a group can be treated as the same

thing (trigger the same outcome, result in the same
behavior, etc.).

○ If one test reveals a fault, others in this class
(probably) will too. In one test does not reveal a
fault, the other ones (probably) will not either.

● Perfect partitioning is difficult, so grouping
based largely on intuition, experience, and
common sense.

Gregory Gay CSCE 747 - Spring 2016 28

Example

substr(string str, int index)
What are some possible partitions?

● index < 0
● index = 0
● index > 0
● str with length < index
● str with length = index
● str with length > index
● ...

Gregory Gay CSCE 747 - Spring 2016 29

Choosing Input Partitions

● Look for equivalent output events.
● Look for ranges of numbers or values.
● Look for membership in a logical group.
● Look for time-dependent equivalence

classes.
● Look for equivalent operating environments.
● Look at the data structures involved.
● Remember invalid inputs and boundary

conditions.

Gregory Gay CSCE 747 - Spring 2016 30

Look for Equivalent Outcomes

● It is often easier to find good tests by looking
at the outputs and working backwards.
○ Look at the outcomes of a feature and group input

by the outcomes they trigger.
● Example: A graphics routine that draws lines on

a canvas. Outcomes include:
○ No line
○ Thin, short line
○ Thin, long line
○ Thick, short line
○ … etc.

Gregory Gay CSCE 747 - Spring 2016 31

Look for Ranges of Values

● If an input is intended to be a 5-digit integer
between 10000 and 99999, you want
partitions:
<10000, 10000-99999, >100000

● Other options: < 0, max int, real-valued
numbers

● You may want to consider non-numeric
values as a special partition.

Gregory Gay CSCE 747 - Spring 2016 32

Look for Membership in a Group

Consider the following inputs to a program:
● The name of a valid Java data type.
● A letter of the alphabet.
● A country name.

● All make up input partitions.
● All groups can be subdivided further.
● Look for context that an input is used in.

Gregory Gay CSCE 747 - Spring 2016 33

Timing Partitions

The timing and duration of an input may be as
important as the value of the input.
● Very hard and very crucial to get right.

● Trigger an electrical pulse 5ms before a
deadline, 1ms before the deadline, exactly at
the deadline, and 1ms after the deadline.

● Push the “Esc” key before, during, and after the
program is writing to (or reading from) a disc.

Gregory Gay CSCE 747 - Spring 2016 34

Equivalent Operating Environments

● The environment may affect the behavior of
the program. Thus, environmental factors
can be partitioned and varied when testing.

● Memory may affect the program.
● Processor speed and architecture.

○ Try with different machine specs.
● Client-Server Environment

○ No clients, some clients, many clients
○ Network latency
○ Communication protocols (SSH, FTP, Telnet)

Gregory Gay CSCE 747 - Spring 2016 35

Data Structure Can Suggest
Partitions

Certain data structures are prone to certain
types of errors. Use those to suggest
equivalence classes.

For sequences, arrays, or lists:
● Sequences that have only a single value.
● Different sequences of different sizes.
● Derive tests so the first, middle, and last

elements of the sequence are accessed.

Gregory Gay CSCE 747 - Spring 2016 36

Do Not Forget Invalid Inputs!

● Likely to cause problems. Do not forget to
incorporate them as input partitions.
○ Exception handling is a well-known problem area.
○ People tend to think about what the program should

do, not what it should protect itself against.

● Take these into account with all of the other
selection criteria already discussed.

Gregory Gay CSCE 747 - Spring 2016 37

Input Partition Example

What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0
We should also consider the combinations of a
and b that influence the outcome of c:
a > b, a < b, a = b

Gregory Gay CSCE 747 - Spring 2016 38

Creating Requirements-Based Tests

Identify
Representative

Values

Generate Test
Case

Specifications

Generate
Test Cases

For each independently testable
feature, we want to:
1. Identify the representative

value partitions for each input
or output.

2. Use the partitions to form
abstract test specifications for
the combination of inputs.

3. Then, create concrete test
cases by assigning concrete
values from the set of input
partitions chosen for each
possible test specification.

Gregory Gay CSCE 747 - Spring 2016 39

Equivalence Partitioning

Feature insert(int N, list A).
Partition inputs into equivalence classes.
1. int N is a 5-digit integer between 10000 and 99999.

Possible partitions:
<10000, 10000-99999, >100000

2. list A is a list of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,
List of Length > 10

Gregory Gay CSCE 747 - Spring 2016 40

From Partition to Test Case

Choose concrete values for each combination of input
partitions: insert(int N, list A)
int N

list A

Test Specifications:
insert(< 10000, Empty List)

insert(10000 - 99999, list[1])

insert(> 99999, list[2-10])

etc

Test Cases:
insert(5000, {})

insert(96521, {11123})

insert(150000, {11123, 98765})

etc

< 10000

10000 - 99999

> 99999

Empty List

List[1]

List[2-10]

List[>10]

Gregory Gay CSCE 747 - Spring 2016 41

Generate Test Cases

Generate Test Case
Specifications

Generate Test
Cases

substr(string
str, int index)

Specification:
str: length >=2, contains
special characters
index: value > 0

Test Case:
str = “ABCC!\n\t7”
index= 5

Gregory Gay CSCE 747 - Spring 2016 42

Boundary Values

Basic Idea:
● Errors tend to occur

at the boundary of a
partition.

● Remember to select
inputs from those
boundaries.

Gregory Gay CSCE 747 - Spring 2016 43

Choosing Test Case Values

Choose test case values at the boundary (and typical)
values for each partition.
● If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

Gregory Gay CSCE 747 - Spring 2016 44

Key Points

● The requirement specifications define the
correct behavior of the system.
○ Therefore, the first step in testing should be to derive

tests from the specifications.
● If the specification cannot be tested, you

most likely have a bad requirement.
○ Rewrite it so it is testable.
○ Remove the requirement if it can’t be rewritten.

● Tests must be written in terms of
independently testable features.

Gregory Gay CSCE 747 - Spring 2016 45

Key Points

● Not all inputs will have the same outcome,
so the inputs should be partitioned and test
cases should be derived that try values from
each partition.

● Input partitions can be used to form abstract
test specifications that can be turned into 1+
concrete test cases.

Gregory Gay CSCE 747 - Spring 2016 46

Next Time

● Combinatorial Testing
○ How to come up with a reasonable number of

requirements-based test cases.
○ Reading: Chapter 11

● Homework:
○ Assignment 1 Posted
○ Reading Assignment due Tuesday (11:59 PM)

■ James Whittaker. The 10-Minute Test Plan.
● One page write-up:

○ summary + thoughts + suggestions for improvement

Gregory Gay CSCE 747 - Spring 2016 47

