
Combinatorial 
Testing
CSCE 747 - Lecture 5 - 01/26/2016



Creating Requirements-Based Tests

Write Testable 
Specifications

Identify 
Independently 

Testable Features

Identify 
Representative 

Input Values

Generate Test 
Case 

Specifications

Generate Test 
Cases

Produce clear, detailed, and 
testable requirements.

Figure out what functions can be 
tested in (relative) isolation.

What are the outcomes of the 
feature, and which input 
classes will trigger them?

Identify abstract 
classes of test cases. 

Instantiate concrete 
input/output pairs.

Gregory Gay CSCE 747 - Spring 2016 2



Activity - Functional Testing
At work, you are asked to develop a simple C++ container class SetOfE containing elements of type E 
and you are asked to include (among many other) the following methods:
● void insert(E e)
● Bool find(E e)
● void delete(E e)

Given the rather obvious meaning of these methods, using domain partitioning, please develop 
functional test cases (as abstract test specifications) for the methods. You can define your test cases 
as input/output pairs. 

For example, to test insert(E e) one test case could be:
Input: Empty Container/any e Expected output: e in Container.

Note: Do not go overboard with test cases—4-6 test cases per method ought to be adequate

Gregory Gay CSCE 747 - Spring 2016 3



Question 6 (2) - Solution
Insert Empty/ any e e in container

E with one element / any e e in container

E with multiple elements / any e e in container

Very large E/ any e e in container

E containing e/ e Error or no change

Any E/ malformed e Error

Exists E containing e/ e True

E not containing e/ e False

Very large E containing e/ e True

E with only element e/ e True

Any E / malformed e Error

Empty / e False

Delete E containing e/ e e no longer in 
list

E not containing e/ e no change (or 
error)

Any E / malformed e error

Very large E containing e/ e e no longer in 
list

Empty / e no change

Gregory Gay CSCE 747 - Spring 2016 4



Building a Test Suite

Identify 
Representative 

Values

Generate Test 
Case 

Specifications

Generate Test 
Cases

Smarter process than random 
testing, but still comes down to 
brute force:
● May still be an infeasibly high 

number of test specifications.
● Each specification can be 

transformed into MANY 
concrete test cases. How 
many should be tried?

How do we arrive at an effective, 
reasonably-sized test suite?

Gregory Gay CSCE 747 - Spring 2016 5



Today’s Goals:

● Category-Partition Method
○ Assists in identifying test specifications, estimating 

the number of tests, and forming a subset that meets 
your budget

● Combinatorial Interaction Testing
○ Method of covering n-way combinations of 

parameter values with a small number of tests.
● Catalog-Based Testing

○ Makes identifying attributes and representative 
values more systematic and enables some 
automation. 

Gregory Gay CSCE 747 - Spring 2016 6



Category-Partition Method



Category-Partition Method

A method of generating test specifications from 
requirement specifications.
● A small number of additional steps on the 

process discussed last class.
● Requires identifying categories, choices, and 

constraints. 
● Once identified, these can be used to 

automatically generate a list of test 
specifications to cover.

Gregory Gay CSCE 747 - Spring 2016 8



Identify Independently Testable Features 
and Parameter Characteristics

● Identify the features that can be tested in 
isolation and their parameters.

● For each parameter, identify the parameter 
characteristics. 
○ What are the controllable attributes?
○ What are their possible values?

■ May be defined partially by other parameters and 
their characteristics.

■ May not correspond to variables in the code.
● The parameter characteristics are called 

categories.
Gregory Gay CSCE 747 - Spring 2016 9



Example: Computer Configurations

● Your company sells custom computers.
● A configuration is a set of options for a 

model of computer.
○ Some combinations are invalid (i.e., VGA monitor 

with HDMI video output).
● Testing feature: 

○ checkConfiguration(model,components)
○ What are the parameters?
○ Next - what are the choices to be made for each 

parameter?

Gregory Gay CSCE 747 - Spring 2016 10



Parameter Characteristics

● Turn to the requirements specifications.
● Model: A model identifies a specific product and determines a set of 

constraints on available components. Models are identified by a model 
number. Models are characterized by logical slots on a bug. Slots may be 
required (must be filled) or optional (may be left empty). 

● Set of Components: A set of <slot, component> pairs, which must 
correspond to the required and optional slots associated with the model. A 
component is a choice that can be varied within a model. Available 
components and a default for each slot is determined by the model. The 
special value “empty” is allowed and may be the default for optional slots. 
In addition to being compatible or incompatible with a model, components 
may be compatible or incompatible with each other.

Gregory Gay CSCE 747 - Spring 2016 11



Parameter Characteristics
● Model

○ Model number
○ Number of required slots
○ Number of optional slots

● Components
○ Correspondence of selection with model slots
○ Number of required components with non-empty selections
○ Number of optional components with non-empty selections
○ Selected components for required slots
○ Selected components for optional slots

● Product Database
○ Number of models in database
○ Number of components in database

Gregory Gay CSCE 747 - Spring 2016 12



Identify Representative Values

● For each category, there are many possible 
values that can be selected for concrete test 
cases.

● We need to identify classes of values, called 
choices, for each category.
○ A test specification is a combination of choices for all 

categories.
● Consider all outcomes of a feature.
● Consider boundary values.

Gregory Gay CSCE 747 - Spring 2016 13



Parameter Characteristics
● Model

○ Model number
○ Number of required slots
○ Number of optional slots

● Components
○ Correspondence of selection with model slots
○ Number of required components with non-empty selections
○ Number of optional components with non-empty selections
○ Selected components for required slots
○ Selected components for optional slots

● Product Database
○ Number of models in database
○ Number of components in database

Gregory Gay CSCE 747 - Spring 2016 14



Choices for Each Category
● Model

○ Model number
■ malformed
■ not in database
■ valid

○ Number of required slots
■ 0
■ 1
■ many

○ Number of optional slots
■ 0
■ 1
■ many

● Product Database
○ Number of models in database

■ 0
■ 1
■ many

○ Number of components in database
■ 0
■ 1
■ many

Gregory Gay CSCE 747 - Spring 2016 15

● Components
○ Correspondence of selection with 

model slots
■ omitted slots
■ extra slots
■ mismatched slots
■ complete correspondence

○ Number of required(optional) 
components with non-empty 
selections

■ 0
■ < number required (optional)
■ = number required (optional)

○ Selected components for required 
(optional) slots

■ some default
■ all valid
■ >= 1 incompatible with slot
■ >= 1 incompatible with another 

component
■ >= 1 not in database



Generate Test Case Specifications

● Test specifications are formed by combining 
choices for all categories.

● Number of possible combinations may be 
impractically large, so:
○ Eliminate impossible pairings.
○ Identify constraints that can remove 

unnecessary options.
○ From the remainder, choose a subset of 

specifications to turn into concrete tests.

Gregory Gay CSCE 747 - Spring 2016 16



Choices for Each Category
● Model

○ Model number
■ malformed
■ not in database
■ valid

○ Number of required slots
■ 0
■ 1
■ many

○ Number of optional slots
■ 0
■ 1
■ many

● Product Database
○ Number of models in database

■ 0
■ 1
■ many

○ Number of components in database
■ 0
■ 1
■ many

Gregory Gay CSCE 747 - Spring 2016 17

● Components
○ Correspondence of selection with 

model slots
■ omitted slots
■ extra slots
■ mismatched slots
■ complete correspondence

○ Number of required(optional) 
components with non-empty 
selections

■ 0
■ < number required (optional)
■ = number required (optional)

○ Selected components for required 
(optional) slots

■ some default
■ all valid
■ >= 1 incompatible with slot
■ >= 1 incompatible with another 

component
■ >= 1 not in database

● Seven categories with three 
choices.

● Two categories with 6 choices.
● One category with 4 choices.
● Results in 37 x 62 x 4 = 314928 

test specifications
● However… not all combinations 

correspond to reasonable 
specifications.



Identify Constraints Among Choices

Three types of constraint:
● IF

○ This partition only needs to be considered if another 
property is true.

● ERROR
○ This partition should cause a problem no matter 

what value the other input variables have.
● SINGLE

○ Only a single test with this partition is needed.

Gregory Gay CSCE 747 - Spring 2016 18



Applying Constraints
● Model

○ Model number
■ malformed [error]
■ not in database [error]
■ valid

○ Number of required slots
■ 0 [single]
■ 1 [property RSNE] [single]
■ many [property RSNE], [property 

RSMANY]
○ Number of optional slots

■ 0 [single]
■ 1 [property OSNE][single]
■ many [property OSNE], [property 

OSMANY]
● Product Database

○ Number of models in database
■ 0 [error]
■ 1 [single]
■ many

○ Number of components in database
■ 0 [error]
■ 1 [single]
■ many

Gregory Gay CSCE 747 - Spring 2016 19

● Components
○ Correspondence of selection with model slots

■ omitted slots [error]
■ extra slots [error]
■ mismatched slots [error]
■ complete correspondence

○ Number of required components with non-empty 
selections

■ 0 [if RSNE] [error]
■ < number required [if RSNE] [error]
■ = number required [if RSMANY]

○ Number of optional components with non-empty 
selections

■ 0 
■ < number optional [if OSNE]
■ = number optional [if OSMANY]

○ Selected components for required (optional) slots
■ some default [single]
■ all valid
■ >= 1 incompatible with slot
■ >= 1 incompatible with another component
■ >= 1 not in database [error]



Combinatorial Interaction 
Testing



Dealing With All of These Test 
Specifications

Identify 
Representative 

Values

Generate Test 
Case 

Specifications

Generate Test 
Cases

● Category-partition testing 
takes exhaustive 
enumeration as a base 
approach and adds 
constraints to reduce the 
number of tests.

● This is only reasonable when 
constraints reflect real 
conditions.

● If constraints are added 
solely to reduce the number 
of combinations, then you will 
produce bad tests.

Gregory Gay CSCE 747 - Spring 2016 21



Website Display Options
● Display Mode

○ full-graphics
○ text-only
○ limited-bandwidth

● Color
○ monochrome
○ color-map
○ 16-bit
○ true-color

● Language
○ English
○ French
○ Spanish
○ Portuguese

Gregory Gay CSCE 747 - Spring 2016 22

● Screen Size
○ Handheld
○ Laptop
○ Full-size

● Fonts
○ Minimal
○ Standard
○ Document-loaded



Combinatorial Interaction Testing

● Some parameter combinations may cause 
faults, so we can’t just try each choice once.

● But we do not need all combinations either - 
many will be redundant. 

● Instead, pick a number k < n (n = number of 
parameters), and generate all k-way 
combinations.
○ Exhaustive enumeration grows exponentially with 

the number of parameters. 
○ Pairwise combinations grow logarithmically. 

Gregory Gay CSCE 747 - Spring 2016 23



Combinatorial Interaction Testing

● Choose two parameters, 
enumerate all 
combinations.

● Adding the third is 
multiplicative. 

● Instead, consider all n-way 
combinations of values 
○ (2-way in this case)

● Each tuple contains three 
pairings. Careful selection 
of those pairings covers 
more combinations.

Gregory Gay CSCE 747 - Spring 2016 24

Display-Mode Screen Size Fonts

Full-graphics Handheld Minimal

Full-graphics Laptop Standard

Full-graphics Fullsize Document-
Loaded

Text-Only Handheld Standard

Text-Only Laptop Document-
Loaded

Text-Only Fullsize Minimal

Limited-
Bandwidth

Handheld Document-
Loaded

Limited-
Bandwidth

Laptop Minimal

Limited-
Bandwidth

Fullsize Standard



Covering Arrays

● In functional testing, we want to cover a 
large number of the parameter 
combinations.
○ We seek coverage of strength k. 

■ k=n means we have covered all combinations.
■ k < n means all k-way combinations are covered.

● A covering array of strength k is the smallest 
array that covers all k-way combinations.

● Selecting smallest array is NP-hard.
○ However, greedy and heuristic searches can 

produce near-optimal solutions.

Gregory Gay CSCE 747 - Spring 2016 25



Constraining the Combinations

● Some combinations may not be possible in 
practice. Constraints can be used to remove 
invalid combinations.
○ Monochrome is only an option for handheld displays.
○ So, we remove any pairing of monochrome with 

laptop or full-size displays.

Gregory Gay CSCE 747 - Spring 2016 26



Catalog-Based Testing



Learning from Experience

● Generating functional tests requires human 
judgement.
○ Identifying features and parameters is fairly 

straightforward.
○ But selecting representative value requires creativity 

and thought. How do you best partition the input 
space? What boundary values need covered? How 
do I hit all outcomes of a function?

● Lessons learned from testing one system 
can improve testing of new systems.

Gregory Gay CSCE 747 - Spring 2016 28



Catalog-Based Testing

● Catalogs encode checklists of input classes 
for particular types of variables.
○ Example: A computation uses an integer variable 

that is supposed to fall in a range. The catalog 
recommends the following partitions:
■ Value immediately preceding the lower bound of the 

interval.
■ Lower bound of the interval.
■ A value within the interval.
■ The upper bound of the interval.
■ The value immediately following the upper bound.

○ Covers normal, erroneous, and boundary cases.

Gregory Gay CSCE 747 - Spring 2016 29



Catalog-Based Testing

● The catalog-based approach requires:
○ Decomposing the requirement specification into 

elementary items related to testing that specification.
■ i.e., features, parameters, and conditions on 

both. 
○ Deriving an initial set of test specifications from 

these elementary items. 
○ Completing test specifications using a suitable 

catalog.

Gregory Gay CSCE 747 - Spring 2016 30



Identify Elementary Items

● We need to know some information about what we are 
testing.

● From the requirement specification, identify the 
following:
○ Preconditions - conditions that must be satisfied before test 

execution.
○ Postconditions - the result of executing this feature.
○ Variables - input, output, and intermediate values that the 

system operates on.
○ Operations - calculations performed using the variables.
○ Definitions - other facts offered by the specification.

Gregory Gay CSCE 747 - Spring 2016 31



Example: cgi_decode
cgi_decode(encoded): translates a cgi-encoded string to a plain ASCII string, reversing 
the encoding performed on most web servers. CGI translates spaces to ‘+’ and most 
alphanumeric characters to hexadecimal escape sequences. cgi_decode maps ‘+’ to ‘’, 
“%xy” (where x and y are hexadecimal digits) to the corresponding ASCII character, and 
other alphanumeric characters to themselves.

INPUT: encoded - a string of CGI-encoded characters. Can contain alphanumeric 
characters, ‘+’, and the substring “%xy”. Is terminated by a null character

OUTPUT: decoded - a string containing the plain ASCII characters corresponding the 
the input sequence. Alphanumeric characters are copied into the output in the 
corresponding position. A blank is substituted for each ‘+’ character. A single ASCII 
character with hexadecimal value xy is substituted for each substring “%xy” in the input.

OUTPUT: return_value - 0 for sucess, 1 if the input is malformed.

Gregory Gay CSCE 747 - Spring 2016 32

DEF 1. Hexidecimal digits 
are 0-9, A-F, a-f.
DEF 2. a CGI hexidecimal is 
a sequence of three 
characters “%xy” where x 
and y are hexadecimal digits.
DEF 3. a CGI item is either 
an alphanumeric character, 
‘+’, or a CGI hexadecimal. 

VAR 1. Encoded: string of CGI 
characters.
VAR 2. Decoded: string of 
ASCII characters.
VAR 3. return value: boolean.

PRE 1. (assumed) the input string Encoded is a 
null-terminated string of characters.
PRE 2. (validated) the input string Encoded is a 
sequence of CGI items.

POST 1. If the input string Encoded contains alphanumeric 
characters, they are copied to the corresponding position in the 
output string.
POST 2. If the input string Encoded contains ‘+’ characters, they are 
replaced by ASCII space characters in the corresponding positions 
in the output string.
POST 3. If the input string Encoded contains CGI-hexadecimals, 
they are replaced by the corresponding ASCII characters.
POST 4. If the input string Encoded is a valid sequence, cgi_decode 
returns 0.
POST 5. Id the input string Encoded contains a malformed CGI-
hexadecimal, i.e., a substring “%xy” where either x or y are absent 
and not hexadecimal digits, cgi_decode returns 1.
POST 6. If the input string Encoded contains any illegal characters, 
cgi_decode returns 1.

OP 1. Scan the input string Encoded.



Elementary Items
● DEF 1. Hexidecimal digits are 0-9, A-F, a-f.
● DEF 2. a CGI hexidecimal is a sequence of three characters “%xy” where x and y are 

hexadecimal digits.
● DEF 3. a CGI item is either an alphanumeric character, ‘+’, or a CGI hexadecimal. 
● VAR 1. Encoded: string of CGI characters.
● VAR 2. Decoded: string of ASCII characters.
● VAR 3. return value: boolean.
● PRE 1. (assumed) the input string Encoded is a null-terminated string of characters.
● PRE 2. (validated) the input string Encoded is a sequence of CGI items.
● POST 1. If the input string Encoded contains alphanumeric characters, they are copied to the 

corresponding position in the output string.
● POST 2. If the input string Encoded contains ‘+’ characters, they are replaced by ASCII space 

characters in the corresponding positions in the output string.
● POST 3. If the input string Encoded contains CGI-hexadecimals, they are replaced by the 

corresponding ASCII characters.
● POST 4. If the input string Encoded is a valid sequence, cgi_decode returns 0.
● POST 5. Id the input string Encoded contains a malformed CGI-hexadecimal, i.e., a substring “%

xy” where either x or y are absent and not hexadecimal digits, cgi_decode returns 1.
● POST 6. If the input string Encoded contains any illegal characters, cgi_decode returns 1.
● OP 1. Scan the input string Encoded.

Gregory Gay CSCE 747 - Spring 2016 33



Derive Initial Test Specifications

● Now, we want to partition the input domain. 
We can use the elementary items to do so.

● Validated Preconditions: 
○ Simple preconditions (true/false) divide input into two 

classes.
○ Complex preconditions (involving and/or) can add 

additional input classes.
● Assumed Preconditions:

○ Not responsible for checking, but make sure that 
they are checked elsewhere.

Gregory Gay CSCE 747 - Spring 2016 34



Derive Initial Test Specifications

● Postconditions: 
○ If the postcondition is given in a conditional form, it is 

treated as a validated precondition.
● Definitions:

○ Any that refer to variables and are given in 
conditional form should be evaluated as validated 
preconditions. 

● Should scan these elementary items and 
derive test specifications.
○ Treat as an incremental process of discovery and 

refinement.
Gregory Gay CSCE 747 - Spring 2016 35



Deriving Initial Test Specifications
● DEF 1. Hexidecimal digits are 0-9, A-F, a-f.
● DEF 2. a CGI hexidecimal is a sequence of three characters “%xy” where x and y are 

hexadecimal digits.
● DEF 3. a CGI item is either an alphanumeric character, ‘+’, or a CGI hexadecimal. 
● VAR 1. Encoded: string of CGI characters.
● VAR 2. Decoded: string of ASCII characters.
● VAR 3. return value: boolean.
● PRE 1. (assumed) the input string Encoded is a null-terminated string of characters.
● PRE 2. (validated) the input string Encoded is a sequence of CGI items.
● POST 1. If the input string Encoded contains alphanumeric characters, they are copied to the 

corresponding position in the output string.
● POST 2. If the input string Encoded contains ‘+’ characters, they are replaced by ASCII space 

characters in the corresponding positions in the output string.
● POST 3. If the input string Encoded contains CGI-hexadecimals, they are replaced by the 

corresponding ASCII characters.
● POST 4. If the input string Encoded is a valid sequence, cgi_decode returns 0.
● POST 5. Id the input string Encoded contains a malformed CGI-hexadecimal, i.e., a substring “%

xy” where either x or y are absent and not hexadecimal digits, cgi_decode returns 1.
● POST 6. If the input string Encoded contains any illegal characters, cgi_decode returns 1.
● OP 1. Scan the input string Encoded.

Gregory Gay CSCE 747 - Spring 2016 36

TC-PRE2-1: Encoded is a sequence of CGI items.
TC-PRE2-2: Encoded is not a sequence of CGI items.TC-POST1-1: Encoded contains 1+ alphanumeric characters.

TC-POST1-2: Encoded does not contain any alphanumeric 
characters.TC-POST2-1: Encoded contains 1+ ‘+’ characters.
TC-POST2-2: Encoded does not contain any ‘+’ characters.
TC-POST3-1: Encoded contains 1+ CGI hexadecimals.
TC-POST3-2: Encoded does not contain any CGI 
hexadecimals.

TC-POST5-1: Encoded contains 1+ malformed CGI 
hexadecimals.
TC-POST6-1: Encoded contains 1+ illegal characters.



Derive Initial Test Specifications
● TC-PRE2-1: Encoded is a sequence of CGI items.
● TC-PRE2-2: Encoded is not a sequence of CGI items.
● TC-POST1-1: Encoded contains 1+ alphanumeric characters.
● TC-POST1-2: Encoded does not contain any alphanumeric 

characters.
● TC-POST2-1: Encoded contains 1+ ‘+’ characters.
● TC-POST2-2: Encoded does not contain any ‘+’ characters.
● TC-POST3-1: Encoded contains 1+ CGI hexadecimals.
● TC-POST3-2: Encoded does not contain any CGI hexadecimals.
● TC-POST5-1: Encoded contains 1+ malformed CGI hexadecimals.
● TC-POST6-1: Encoded contains 1+ illegal characters.

Gregory Gay CSCE 747 - Spring 2016 37



Complete Test Specifications Using 
Catalogs

● Final step is to generate additional test 
specifications from variables and operations 
using catalogs.

● Use variable type and context to add 
additional test specifications. 

● In a catalog, value partitions are labeled 
based on whether that variable is an input, 
output, or either.

Gregory Gay CSCE 747 - Spring 2016 38



Common Catalogs
● Boolean

○ [in/out] true
○ [in/out] false

● Enumeration
○ [in/out] each enumerated value
○ [in] values outside of the 

enumerated set
● Range L..U

○ [in] L-1
○ [in/out] L
○ [in/out] A value between L and U
○ [in/out] U
○ [in] U+1

● Numeric Constant C
○ [in/out] C
○ [in] C - 1
○ [in] C + 1
○ [in] Any other constant in the same 

data type.

Gregory Gay CSCE 747 - Spring 2016 39

● Non-Numeric Constant C
○ [in/out] C
○ [in] Any other constant in the same 

data type
○ [in] Some other value of the same 

data type
● Sequence

○ [in/out] Empty
○ [in/out] A single element
○ [in/out] More than one element
○ [in/out] Maximum length (in 

bounded) or very large
○ [in] Longer than max length (if 

bounded)
○ [in] Incorrectly terminated

● Scan with action on element P
○ [in] P occurs at beginning of 

sequence
○ [in] P occurs in interior of sequence
○ [in] P occurs at end of sequence
○ [in] P appears twice in a row
○ [in] P does not occur in sequence



Checklists are Effective

Two NASA spacecraft projects: 192 critical 
errors found during integration and testing. 
● 142 of those were found and addressed after 

using a simple safety checklist similar to 
catalog-based testing.

● Most were problems with unexpected input.
○ Unexpected values, and more importantly, 

unexpected timing.

Gregory Gay CSCE 747 - Spring 2016 40



We Have Learned

● Requirements-based tests are derived by 
○ identifying independently testable features
○ partitioning their input/output to identify equivalence 

partitions 
○ combining inputs into test specifications

■ and removing impossible combinations
○ then choosing concrete test values for each 

specification

Gregory Gay CSCE 747 - Spring 2016 41



We Have Learned

● Catalogs can be used to come up with input 
and output partitions that make sense given 
the type and context we use variables in.

● We may have too many test specifications to 
realistically implement. 
○ Can impose constraints through category-partition 

testing.
○ Can use combinatorial interaction testing to cover all 

n-way pairs efficiently. 

Gregory Gay CSCE 747 - Spring 2016 42



Next Class

● Assessing test suite adequacy
○ How do we measure “good enough” testing?

● Structural testing
○ Deriving tests from the source code of the system.

● Reading: Chapter 9, 12
● Homework: 

○ Assignment 1 is out. Any questions?

Gregory Gay CSCE 747 - Spring 2016 43


