
Structural Testing
CSCE 747 - Lecture 6 - 01/28/2016

Every developer must answer:
 Are our tests are any good?

More importantly… Are they good
enough to stop writing new tests?

Have We Done a Good Job?

What we want:
● We’ve found all the faults.

○ Impossible.

What we (usually) get:
● We compiled and it worked.
● We run out of time or budget.

○ Inadequate.

Gregory Gay CSCE 747 - Spring 2016 3

Test Adequacy Metrics

Instead - can we compromise between the
impossible and the inadequate?

● Can we measure “good testing”?
○ Test adequacy metrics “score” testing efforts by

measuring the completion of a set of test
obligations.
■ Properties that must be met by our test cases.

Gregory Gay CSCE 747 - Spring 2016 4

(In)Adequacy Metrics

● We do not know what faults exist before
testing, so we rely on an approximation of
“we found all of the faults”.

● Criteria identify inadequacies in the tests.
○ If the test does reach a statement, it is inadequate

for finding faults in that statement.
○ If the requirements discuss two outcomes of a

function, but the tests only cover one, then the tests
are inadequate for verifying that requirement.

Gregory Gay CSCE 747 - Spring 2016 5

Adequacy Metrics

● Adequacy Metrics based on coverage of
factors correlated to finding faults.
○ (hopefully)
○ Widely used in industry - easy to understand, cheap

to calculate, offer a checklist.
○ Some metrics based on coverage of requirement

statements, used for verification.
○ Majority based on exercising elements of the source

code in ways that might trigger faults.
■ This is the basis of structural testing.

Gregory Gay CSCE 747 - Spring 2016 6

We Will Cover

● Structural Testing:
○ Derive tests from the program structure, directed by

a chosen adequacy metric.

● Common structural coverage metrics:
○ Statement coverage
○ Branch coverage
○ Condition coverage
○ Path coverage

Gregory Gay CSCE 747 - Spring 2016 7

Structural Testing

● The structure of the software itself is a
valuable source of information.

● Structural testing is the practice of using that
structure to derive test cases.

● Sometime called white-box testing
○ Functional = black-box.

Gregory Gay CSCE 747 - Spring 2016 8

Structural Testing
● Uses a family of metrics

that define how and
what code is to be
executed.

● Goal is to exercise a
certain percentage of
the code.
○ Why??

Gregory Gay CSCE 747 - Spring 2016 9

while (*eptr){

char c;

c = *eptr;

if(c == ‘+’){

*dptr = ‘ ‘;

} else{

*dptr = *eptr;

}

}

The basic idea:
You can’t find all of the
faults without exercising
all of the code.

Structural Testing - Motivation

● Requirements-based tests should execute
most code, but will rarely execute all of it.
○ Helper functions
○ Error-handling code
○ Requirements missing outcomes

● Structural testing compliments functional
testing by requiring that code elements are
exercised in prescribed ways.

Gregory Gay CSCE 747 - Spring 2016 11

White Box Does Not
Replace Black Box

● Structural testing should not be the basis for
“How do I choose tests?”
○ Structure-based tests do not directly make an

argument for verification and cannot expose

“missing path” faults - where the implementation
does not include items in the specification.

○ Structural testing is useful for supplementing
functional tests to help reveal faults.
■ Functional tests are good at exposing conceptual faults.

White box tests are good at exposing coding mistakes.
Gregory Gay CSCE 747 - Spring 2016 12

Structural Testing Usage
Take code, derive information about
structure, use test obligation
information to:
● Create Tests

○ Design tests that satisfy
obligations.

● Measure Adequacy of Existing
Tests

○ Measure coverage of
existing tests, fill in gaps.

System Under
Test

Test Inputs

DerivesTests

Test Output

Gregory Gay CSCE 747 - Spring 2016 13

Control and Data Flow

● We need context on how system executes.
● Code is rarely sequential - conditional

statements result in branches in execution,
jumping between blocks of code.
○ Control flow is information on how control passes

between blocks of code.

● Data flow is information on how variables are
used in other expressions.

Gregory Gay CSCE 747 - Spring 2016 14

Control-Flow Graphs
● A directed graph representing

the flow of control through the
program.

● Nodes represent sequential
blocks of program
commands.

● Edges connect nodes in the
sequence they are executed.
Multiple edges indicate
conditional statements (loops,
if statements, switches).

Gregory Gay CSCE 747 - Spring 2016 15

i++

 i<N

A[i]<0

A[i] = - A[i];

return(1)

True
False

True
False

i=0

Structural Coverage Criteria

● Criteria based on exercising of:
○ Statements (nodes of CFG)
○ Branches (edges of CFG)
○ Conditions
○ Paths
○ … and many more

● Measurements used as (in)adequacy criteria
○ If significant parts of the program are not tested,

testing is surely inadequate.

Gregory Gay CSCE 747 - Spring 2016 16

Statement Coverage

● The most intuitive criteria. Did we execute
every statement at least once?
○ Cover each node of the CFG.

● The idea: a fault in a statement cannot be
revealed unless we execute the statement.

● Coverage = Number of Statements Covered
Number of Total Statements

Gregory Gay CSCE 747 - Spring 2016 17

Statement Coverage
int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}
i++

i<N and A[i]
<X

A[i]<0

A[i] = - A[i];

return(1)

True
False

True
False

i=0

How many tests do we need to provide coverage?
What kind of faults could we miss?
Where would we want to use statement coverage?

Gregory Gay CSCE 747 - Spring 2016 18

A Note on Test Suite Size

● Level of coverage is not strictly correlated to
test suite size.
○ Coverage depends on whether obligations are met.

Some tests might not cover new code.

● However, larger suites often find more faults.
○ They exercise the code more thoroughly.

○ How code is executed is often more important than
whether it was executed.

Gregory Gay CSCE 747 - Spring 2016 19

Test Suite Size

● Generally, we favor a large number of
targeted tests over a smaller number of tests
that exercise a lot of statements.
○ If a test targets a smaller number of obligations, it is

easier to tell where a fault is.

○ If a test executes everything and covers a large

number of obligations, we get higher coverage, but
at the cost of being able to identify and fix faults.

○ The exception - if the cost to execute each test is
high.Gregory Gay CSCE 747 - Spring 2016 20

Branch Coverage

● Do we have tests that take all of the control
branches at some point?
○ Cover each edge of the CFG.

● Helps identify faults in decision statements.
● Coverage = Number of Branches Covered

Number of Total Branches

Gregory Gay CSCE 747 - Spring 2016 21

Subsumption

● Coverage metric (A) subsumes another metric
(B) if, for every program P, every test suite
satisfying A also satisfies B with respect to P.
○ If we satisfy A, there is no point in measuring B.
○ Branch coverage subsumes statement coverage.

■ Covering all edges requires covering all nodes in
a control-flow graph.

○ Covering all 2-way parameter interactions

(combinatorial-interaction testing) subsumes
covering all parameter partitions individually.

Gregory Gay CSCE 747 - Spring 2016 22

Subsumption

● Shouldn’t we always choose the stronger
metric?
○ Not always…

■ Typically require more obligations (so, you have
to come up with more tests)

● Or, at least, tougher obligations - making it harder to come up

with the test cases.

■ May end up with a large number of unsatisfiable
obligations

Gregory Gay CSCE 747 - Spring 2016 23

Branch Coverage
i=0

i<N and A[i]
<X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

What test obligations must be covered?
How does fault detection potential change?
Where would we want to use branch coverage?

Gregory Gay CSCE 747 - Spring 2016 24

Decisions and Conditions

● A decision is a complex Boolean expression.
○ Often cause control-flow branching:

■ if ((a && b) || !c) { ...

○ But not always:
■ Boolean x = ((a && b) || !c);

○ Made up of conditions connected with Boolean
operators (and, or, xor, not):
■ Simple Boolean connectives.

● Boolean variables: Boolean b = false;

● Subexpressions that evaluate to true/false involving (<, >, <=,

>=, ==, and !=): Boolean x = (y < 12);

Gregory Gay CSCE 747 - Spring 2016 25

Basic Condition Coverage

● Several coverage metrics that examine the
individual conditions that make up a control-
flow decision.

● Identify faults in decision statements.
(a == 1 || b == -1) instead of (a == -1 || b == -1)

● Most basic form: make each condition T/F.
● Coverage = Number of Truth Values for All Conditions

2x Number of Conditions

Gregory Gay CSCE 747 - Spring 2016 26

Basic Condition Coverage

● Make each condition both True and False

● Can be satisfied without hitting both
branches, so does not subsume branch
coverage.
○ In this case, false branch is taken for both tests

Test Case A B
1 True False
2 False True

(A and B)

Gregory Gay CSCE 747 - Spring 2016 27

Basic Condition Coverage
i=0

i<N and A[i]
<X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}
i++

What test obligations must be covered?
How does fault detection potential change?
Where would we want to use condition coverage?

Gregory Gay CSCE 747 - Spring 2016 28

Compound Condition Coverage

● Evaluate every combination of the conditions

● Subsumes branch coverage, as all outcomes
are now tried.

● Can be expensive in practice.

Test Case A B

1 True True

2 True False

3 False True

4 False False

(A and B)

Gregory Gay CSCE 747 - Spring 2016 29

Compound Condition Coverage

● Requires many test cases.

(A and
(B and
(C and
D))))

Test Case A B C D

1 True True True True

2 True True True False

3 True True False True

4 True True False False

5 True False True True

6 True False True False

7 True False False True

8 True False False False

9 False True True True

10 False True True False

11 False True False True

12 False True False False

13 False False True True

14 False False True False

15 False False False True

16 False False False False

Gregory Gay CSCE 747 - Spring 2016 30

Short-Circuit Evaluation

● In many languages, if the first condition
determines the result of the entire decision,
then fewer tests are required.
○ If A is false, B is never evaluated.

Test Case A B

1 True True

2 True False

3 False -

(A and B)

Gregory Gay CSCE 747 - Spring 2016 31

Modified Condition/Decision
Coverage (MC/DC)
● Requires:

○ Each condition evaluates to true/false
○ Each decision evaluates to true/false
○ Each condition shown to independently affect

outcome of each decision it appears in.

Test Case A B (A and B)

1 True True True

2 True False False

3 False True False

4 False False False

Gregory Gay CSCE 747 - Spring 2016 32

Activity
Draw the CFG and write tests that provide statement,
branch, and basic condition coverage over the following
code:
int search(string A[], int N, string what){
 int index = 0;
 if ((N == 1) && (A[0] == what)){

return 0;
 } else if (N == 0){
 return -1;
 } else if (N > 1){
 while(index < N){
 if (A[index] == what)
 return index;
 else
 index++;
 }
 }
 return -1;
}

Gregory Gay CSCE 747 - Spring 2016 33

Activity

index=0

(N==1) &&
(A[0] =
what)

return 0;

N==0

False

True

return -1;

True

N>1
False

return -1;
False

index
< N

True

A[index]
== what

True

return index;True

index++;
False

False

Gregory Gay CSCE 747 - Spring 2016 34

Activity - Possible Solution
index=0

(N==1) &&
(A[0] = what)

return 0;

N==0
False

True

return -1;

True

N>1
False

return -1;
False

index
< N

True

A[index]
== what

True

return index;True

index++;
False

False

1: A[“Bob”, “Jane”], 2, “Jane”
2: A[“Bob”, “Jane”], 2, “Spot”
3: A[], 0, “Bob”
4. A[“Bob”], 1, “Bob”
5. A[“Bob”], 1, “Spot”

Gregory Gay CSCE 747 - Spring 2016 35

Path Coverage

● Other criteria focus on single elements.
○ However, all tests execute a sequence of elements -

a path through the program.

○ Combination of elements matters - interaction
sequences are the root of many faults.

● Path coverage requires that all paths
through the CFG are covered.

● Coverage = Number of Paths Covered
Number of Total Paths

Gregory Gay CSCE 747 - Spring 2016 36

Path Coverage
i=0

i<N and A[i]
<X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

In theory, path coverage is the ultimate coverage metric.
In practice, it is impractical.
● How many paths does this program have?

Gregory Gay CSCE 747 - Spring 2016 37

How many cases
for

Statement
Branch
Path

Path Testing

loop <= 20

Gregory Gay CSCE 747 - Spring 2016 38

Number of Tests

Path coverage for that loop bound requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the
benefits of path coverage without the cost...

Gregory Gay CSCE 747 - Spring 2016 39

We Have Learned

● Test adequacy metrics let us “measure” how
good our testing efforts are.
○ They prescribe test obligations that can be used to

remove inadequacies from test suites.
● Code structure is used in many adequacy

metrics. Many different criteria, based on:
○ Statements, branches, conditions, paths, etc.

● Coverage metrics tuned towards particular
types of faults. Some are theoretically
stronger than others, but are also more
expensive and difficult to satisfy.

Gregory Gay CSCE 747 - Spring 2016 40

Next Time

● More on structural coverage
○ Path-based Metrics
○ Procedure Coverage
○ The Infeasibility Problem
○ Limitations of Coverage Metrics

● Homework 1
○ Any questions?

Gregory Gay CSCE 747 - Spring 2016 41

