
Data Flow Testing
CSCE 747 - Lecture 9 - 02/09/2016

Control Flow

● Capture dependencies
between parts of the
program, based on
“passing of control”
between those parts.

● We care about the effect
of a statement when it
affects the path taken.
○ but deemphasize the

information being
transmitted.

Gregory Gay CSCE 747 - Spring 2016 2

x--;
/* continue */

1<x

T F

Data Flow

● Another view - program statements compute
and transform data…
○ So, look at how that data is passed through the

program.
● Reason about dependence

○ A variable is used here - where does its value come
from?

○ If the expression assigned to a variable is changed
what else would be affected?

○ Def-Use Pairs - a dependence relationship between
a definition of a variable and the use of that
definition.

Gregory Gay CSCE 747 - Spring 2016 3

Data Flow Analyses

● Used to detect faults and other anomalies.

● Also can be used to derive test cases.
○ Have we covered the data dependencies?

Gregory Gay CSCE 747 - Spring 2016 4

Any-Paths All-Paths

Forward (pred) Reach

U may be preceded by G
without an intervening K

Avail

U is always preceded by G
without an intervening K

Backward (succ) Live

D may lead to G before K

Inevitability

D always leads to G before
K

Dealing with Arrays and
Pointers

Dealing With Arrays/Pointers

● Arrays and pointers (including object
references and arguments) introduce issues.
○ It is not possible to determine whether two access

refer to the same storage location.
■ a[x] = 13;

k = a[y];
● Are these a def-use pair?

■ a[2] = 42;
i = b[2];
● Are these a def-use pair?

○ Aliasing = two names refer to the same memory location.

Gregory Gay CSCE 747 - Spring 2016 6

Aliasing

● Aliasing is when two names refer to the
same memory location.
○ int[] a = new int[3];

int[] b = a;

a[2] = 42;
i = b[2];

○ a and b are aliases.
● Worse in C:

p = &b;
*(p + i) = k;

Gregory Gay CSCE 747 - Spring 2016 7

Uncertainty

● Dynamic references and aliasing introduce
uncertainty into data flow analysis.
○ Instead of a definition or use of one variable, may

have a potential def or use of a set of variables.
● Proper treatment depends on purpose of

analysis:
○ If we examine variable initialization, might not want

to treat assignment to a potential alias as
initialization.

○ May wish to treat a use of a potential alias of v as a
use of v.

Gregory Gay CSCE 747 - Spring 2016 8

Dealing With Uncertainty

● Treat uncertainty about aliases like uncertainty about
control flow.

● In transformed code, all array references are distinct.
○ Any-path analysis - create a def-use pair, but

assignment to a[y] does not erase definition to a[x].
○ Gen sets include everything that might be

references, kill sets only include definite references.

Gregory Gay CSCE 747 - Spring 2016 9

a[x] = 13;
k = a[y];

a[x] = 13;
if(x == y) k = a[x];
else k = a[y];

Dealing With Uncertainty

● In transformed code, all array references are distinct.
○ Any-path analysis - create a def-use pair, but

assignment to a[y] does not erase definition to a[x].
○ All-paths analysis - a definition to a[x] makes only

that expression available. Assignment to a[y] kills a
[x].
■ Gen sets should include only what is definitely

referenced and kill sets should include all
possible aliases.Gregory Gay CSCE 747 - Spring 2016 10

a[x] = 13;
k = a[y];

a[x] = 13;
if(x == y) k = a[x];
else k = a[y];

Dealing With Nonlocal Information

● fromCust and toCust
may be references to
the same object.
○ fromHome and fromWork

may also reference the
same object.

● One option - treat all
nonlocal information as
unknown.
○ Treat Customer/PhoneNum

objects as potential aliases.
○ Be careful - may result in

results so imprecise they
are useless.

Gregory Gay CSCE 747 - Spring 2016 11

public void transfer(Customer
fromCust, Customer toCust){

PhoneNum fromHome =
fromCust.getHomePhone();

PhoneNum fromWork =
fromCust.getWorkPhone();

PhoneNum toHome =
toCust.getHomePhone();

PhoneNum toWork =
toCust.getWorkPhone();

}

Interprocedural Analysis

Interprocedural Analysis - Control
Flow

● First option - include other procedures in a
large CFG…

Gregory Gay CSCE 747 - Spring 2016 13

foo()

A

sub()

B

bar()

C

sub()

D

sub()

X

Y

Problem - infeasible paths!

Context-Sensitivity
public class Context{

public static void main(String args[]){

Context c = new Context();

c.foo(3);

c.bar(17);

}

void foo(int n){

int[] a = new int[n];

depends(a,2);

}

void bar(int n){

int[] a = new int[n];

depends(a,16);

}

void depends(int[] a, int n){

a[n] = 42;

}

}

Gregory Gay CSCE 747 - Spring 2016 14

main

C.foo() C.bar()

C.depends()

Context-Insensitive

main

C.foo(3) C.bar(17)

C.depends
(int[3], a, 2)

Context-Sensitive

C.depends
(int[17], a, 16)

Context-Sensitive Analysis

● Copy the called procedure for
each point that it is called.

● Problem - the number of
contexts a procedure is called in
is exponentially higher than the
number of procedures.
○ Precise, but expensive

analysis.
● In practice, only feasible for

small groups of related
procedures.

Gregory Gay CSCE 747 - Spring 2016 15

A

B C

D E

F G

H

Context-Insensitive Analysis

● Unhandled exception analysis
○ If procedure A calls procedure B that throws an

exception, A must handle or declare that exception.
○ Analysis steps hierarchically through the call graph.

● Two conditions:
○ Information needed to analyze calling procedure

must be small.
○ Information about the called procedure must be

independent of caller (context-insensitive)
● Analysis can start from leaves of call graph

and work upward to the root.
Gregory Gay CSCE 747 - Spring 2016 16

Flow-Sensitivity

● Aliasing information
requires context.

● Some analyses can
sacrifice precision
on another aspect:
control-flow
information
○ Call graphs are flow-

insensitive.

Gregory Gay CSCE 747 - Spring 2016 17

main

C.foo(3) C.bar(17)

C.depends
(int[3], a, 2)

C.depends
(int[17], a, 16)

Insensitive Pointer Analysis

● Treat each statement as a constraint.
x = y; (where y is a pointer)

● Note that x may refer to any of the same
objects that y refers to.
○ References(x) ⊇References(y) is a constraint

independent of the path taken.
○ Procedure calls are assignments of values to

arguments.
● Results are imprecise, but better than just

assuming that any two pointers might refer
to the same object.

Gregory Gay CSCE 747 - Spring 2016 18

Data Flow Testing

Overcoming Limitations of
Path Coverage

● We can potentially expose many faults by
targeting particular paths of execution.

● Full path coverage is impossible.
● What are the important paths to cover?

○ Some methods impose heuristic limitations.
○ Can also use data flow information to select a subset

of paths based on how one element can affect the
computation of another.

Gregory Gay CSCE 747 - Spring 2016 20

Choosing the Paths

● Branch or MC/DC coverage already cover
many paths. What are the remaining paths
that are important to cover?

● Basis of data flow testing - computing the
wrong value leads to a failure only when that
value is used.
○ Pair definitions with usages.
○ Ensure that definitions are actually used.
○ Select a path where a fault is more likely to

propagate to an observable failure.

Gregory Gay CSCE 747 - Spring 2016 21

Review - Def-Use Pairs

● Incorrect computation of x at
either 1 or 4 could be
revealed if used at 6.

● (1,6) and (4,6) are DU pairs
for x.
○ DU Pair = there exists a

definition-clear path between the
definition of x and a use of x.

○ If x is redefined on the path, the
original definition is killed and
replaced.

Gregory Gay CSCE 747 - Spring 2016 21

if ...

...

...

x = ..

x = ...

y = x + ...;

1

4

6

Def-Use Pairs

● ++counter, counter++, counter+=1
counter = counter + 1
○ These are equivalent. They are a use of counter, then a new

definition of counter.
● *ptr = *otherPtr

○ Need a policy for how you deal with aliasing.
○ Ad-hoc option:

■ Definition of string *ptr
■ Use of index ptr, string *otherPtr, and index otherPtr.

● ptr++
○ Use of index ptr, and a definition of both the index and string

*ptr.
○ Change to index moves the pointer to a new location.

Gregory Gay CSCE 747 - Spring 2016 23

Activity - DU Pairs

● For the provided code, identify all DU pairs.
○ Hint - first, find all definitions and uses, then link

them.
○ DU Pair = there exists a definition-clear path

between the definition of x and a use of x.
■ If x is redefined on the path, the original definition

is killed and replaced.
○ Remember that there is a loop.

Gregory Gay CSCE 747 - Spring 2016 24

Activity Solution - Defs and Uses

Gregory Gay CSCE 747 - Spring 2016 25

Variable Definitions Uses

*encoded 14 15

*decoded 14 16

*eptr 15, 25, 26, 37 18, 20, 25, 26, 34

eptr 15, 25, 26, 37 15, 18, 20, 25, 26, 34, 37

*dptr 16, 23, 31, 34, 36, 39

dptr 16, 36 16, 23, 31, 34, 36, 39

ok 17, 29 40

c 20 22, 24

digit_high 25 27, 31

digit_low 26 27, 31

Hex_Values - 25, 26

Activity Solution - D-U Pairs

Gregory Gay CSCE 747 - Spring 2016 26

Variable DU Pairs

*encoded (14, 15)

*decoded (14, 16)

*eptr (15, 18), (15, 20), (15,25), (15, 34), (25, 26), (26, 37),
(37, 18), (37, 20), (37,25), (37, 34)

eptr (15, 15), (15, 18), (15, 20), (15, 25), (15, 34), (15, 37),
(25, 26), (26, 37), (37, 18), (37, 20), (37, 26), (37, 34),
(37, 37)

dptr (16, 16) , (16, 23), (16, 31), (16, 34), (16, 36), (16, 39),
(36, 23), (36, 31), (36, 34), (36, 36), (36, 39)

ok (17, 40), (29, 40)

c (20, 22), (20, 24)

digit_high (25, 27), (25, 31)

digit_low (26, 27), (26, 31)

All DU Pair Coverage

● Requires each DU pair be exercised in at
least one program execution.
○ Erroneous values produced by one statement might

be revealed if used in another statement.

Coverage = number exercised DU pairs
number of DU pairs

● Can easily achieve structural coverage
without covering all DU pairs.

Gregory Gay CSCE 747 - Spring 2016 27

All DU Paths Coverage

● One DU pair might belong to many
execution paths. Cover all simple (non-
looping) paths at least once.
○ Can reveal faults where a path is exercised that

should use a certain definition but doesn’t.

Coverage = number of exercised DU paths
number of DU paths

Gregory Gay CSCE 747 - Spring 2016 28

Path Explosion Problem

● Even without looping
paths, the number of SU
paths can be
exponential to the size
of the program.

● When code between
definition and use is
irrelevant to that
variable, but contains
many control paths.

Gregory Gay CSCE 747 - Spring 2016 29

void countBits(char ch){

int count = 0;

if (ch & 1) ++count;

if (ch & 2) ++count;

if (ch & 4) ++count;

if (ch & 8) ++count;

if (ch & 16) ++count;

if (ch & 32) ++count;

if (ch & 64) ++count;

if (ch & 128) ++count;

printf(“‘%c’ (0X%02X) has %d
bits set to 1\n”, ch, ch, count);

}

All Definitions Coverage

● All DU Pairs/All DU Paths are powerful and
often practical, but may be too expensive in
some situations.

● In those cases, pair each definition with at
least one use.

Coverage = number of covered definitions
number of definitions

Gregory Gay CSCE 747 - Spring 2016 30

Dealing With Aliasing

● Requires trade-off between precision and
computational efficiency.

● Underestimate potential aliases
○ Could miss def-use pairs

● Overestimate potential aliases
○ Could have infeasible pairs, leading to unsatisfiable

coverage obligations

● What is a suitable approximation of potential
aliases for testing?

Gregory Gay CSCE 747 - Spring 2016 31

Infeasibility Problem

● Metrics may ask for impossible test cases.
● Path-based metrics aggravates the problem

by requiring infeasible combinations of
feasible elements.
○ Alias analysis may add additional infeasible paths.

● All Definitions Coverage and All DU-Pairs
Coverage often reasonable.
○ All DU-Paths is much harder to fulfill.

Gregory Gay CSCE 747 - Spring 2016 32

We Have Learned

● Arrays, pointers, and complex data
structures introduce uncertainty into
analysis.
○ Requires a policy for how aliasing is handled.
○ Trade-off between computational feasibility and

precision.
● Analyses must handle non-local references.

○ Similar trade-off. Can gain efficiency by sacrificing
flow sensitivity and context sensitivity.

Gregory Gay CSCE 747 - Spring 2016 33

We Have Learned

● If there is a fault in a computation, we can
observe it by looking at where the
computation is used.

● By identifying DU pairs and paths, we can
create tests that trigger faults along those
paths.
○ All DU Pairs coverage
○ All DU Paths coverage
○ All Definitions coverage

Gregory Gay CSCE 747 - Spring 2016 34

Next Class

● Model-Based Testing

● Reading: Chapter 14
● Homework:

○ Homework 2 is out - Due February 23
○ Reading Assignment 2 due Thursday

Gregory Gay CSCE 747 - Spring 2016 35

