
Finite State Verification
CSCE 747 - Lecture 21 - 03/28/2017

So, You Want to Perform
Verification...

● You have a property that you want your
program to obey.

● Great! Let’s write some tests!
● Does testing guarantee that the

requirement is met?
○ Not quite…

■ Testing can make a statistical argument in favor
of verification, but usually cannot guarantee that
the requirement holds in all situations.

2

Testing

● Any real system has a near-infinite number of possible
inputs.

● Some faults trigger failures extremely rarely, or under
conditions that are hard to control and recreate
through testing.

● How can we prove that our
system meets the property?

3

What About a Model?

● We have previously used models to analyze
programs, and to generate test cases.

● Models can be used to “tame” the complexity
of the program.
○ Models are simpler than the real program.
○ By abstracting away unnecessary details, we can

learn important insights.
● Perhaps models can be used to verify the

full programs!

4

What Can We Do With This Model?

If we can show that the model satisfies the
requirement, then the program should as well.

Specification

public static void Main(){
System.out.println(“Hell

o world!”);
}

If the model satisfies
the specification...

And If the model is
well-formed, consistent,
and complete.

And If the model accurately
represents the program.

5

Finite-State Verification

● Express specification as a set of logical
properties, written as Boolean formulae.

● Exhaustively search the state space of the
model for violations of those properties.

● If the property holds -
proof that the model
is correct.

● Contrast with testing -
no violation might just
mean bad tests.

6

Today’s Goals

● Formulating specification statements as
formal logical expressions.
○ Introduction to temporal logic.

● Building behavioral models in NuSMV.
● Performing finite-state verification over the

model.
○ Exhaustive search algorithms.

7

Expressing Specification
Statements as Provable Properties

8

Expressing Properties

● Properties expressed in a formal logic.
○ Temporal logic ensures that properties hold over

execution paths, not just at a single point in time.
● Safety Properties

○ System never reaches bad state.
○ Always in some good state.

● Liveness Properties
○ Eventually useful things happen.
○ Fairness criteria.

9

Temporal Logic

● Sets of rules and symbolism for representing
propositions qualified over time.

● Linear Time Logic (LTL)
○ Reason about events over a timeline.

● Computation Tree Logic (CTL)
○ Branching logic that can reason about multiple

timelines.
● We need both forms of logic - each can

express properties that the other cannot.

10

Linear Time Logic Formulae

Formulae written with propositional variables
(boolean properties), logical operators (and, or,
not, implication), and a set of modal operators:

X (next) X hunger In the next state, I will be hungry.

G (globally) G hunger In all future states, I will be hungry.

F (finally) F hunger Eventually, there will be a state where I am hungry.

U (until) hunger U burger I will be hungry until I start to eat a burger.

R (release) hunger R burger I will cease to be hungry after I eat a burger.

11

LTL Examples

● X (next) - This operator provides a constraint
on the next moment in time.
○ (sad && !rich) -> X(sad)
○ ((x==0) && (add3)) -> X(x == 3)

● F (finally) - At some point in the future, this
property will be true.
○ (funny && ownCamera) -> F(famous)
○ sad -> F(happy)
○ send -> F(receive)

12

LTL Examples

● G (globally) - This property must always be
true.
○ winLottery -> G(rich)

● U (until) - One property must be true until the
second becomes true.
○ startLecture -> (talk U endLecture)
○ born -> (alive U dead)
○ request -> (!reply U acknowledgement)

13

More LTL Examples

● G (requested -> F (received))
● G (received -> X (processed))
● G (processed -> F (G (done)))
● If the above are true, can this be true?

○ G (requested) && G (!done)

14

Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific
quantifiers:

X (next) X hunger In the next state on this path, I will be hungry.

G (globally) G hunger In all future states on this path, I will be hungry.

F (finally) F hunger Eventually on this path, there will be a state where I am
hungry.

U (until) hunger U burger On this path, I will be hungry until I start to eat a burger. (I
must eventually eat a burger)

W (weak until) hunger W burger On this path, I will be hungry until I start to eat a burger.
(There is no guarantee that I eat a burger)

A (all) A hunger Starting from the current state, I must be hungry on
all paths.

E (exists) E hunger There must be some path, starting from the current
state, where I am hungry.

15

CTL Examples

● chocolate = “I like chocolate.”
● warm = “It is warm outside.”
● AG chocolate
● EF chocolate
● AF (EG chocolate)
● EG (AF chocolate)
● AG (chocolate U warm)
● EF ((EX chocolate) U (AG warm))

16

Examples

● It is always possible to reach a state where
we can reset.
○ AG (EF reset)
○ Is the LTL formula G (F reset) the same expression?

● Eventually, the system will reach a good
state and remain there.
○ F (G good)
○ Is the CTL formula AF (AG good) the same?

17

Proving Properties Over Models

18

Building Models

● Many different modeling languages.
● Most verification tools use their own

language.
● Conceptually, most map to state machines.

○ Define a list of variables.
○ Describe how their values are calculated.
○ Each “time step”, recalculate the values of these

variables.
○ The state is the current set of values for all variables.

19

Creating Models - Graphical

● Most common
industrial framework:
Stateflow

20

Creating Models - Written Language
MODULE main
VAR
request: boolean;
status: {ready, busy};
ASSIGN
init(status) := ready;
next(status) :=
case

status=ready & request: busy;
status=ready & !request : ready;
TRUE: {ready, busy};

esac;

● NuSMV modeling
language

● Part of a
framework for
model analysis.

21

Proving Properties

● To perform verification, we take properties
and exhaustively search the state space of
the model for violations.

● Violations give us counter-examples
○ A path that demonstrates how the property has been

violated.
● Implications:

○ Property is incorrect.
○ Model does not reflect expected behavior.
○ Real issue found in the system being designed.

22

Test Generation from FS Verification

● We can also take properties and negate
them.
○ Called a “trap property” - we assert that a property

can never be met.
● The counter-example shows one way the

property can be met.
● This can be used as a test for the real

system - to demonstrate that the final system
meets its specification.

23

Exhaustive Search

● Algorithms exhaustively comb through the possible
execution paths through the model.

● Major limitation - state space explosion.

24

Exhaustive Search - Dining
Philosophers

● Problem - X philosophers sit at a table with Y
forks between them. Philosophers may think
or eat. When they eat, they need two forks.

● Goal is to avoid deadlock - a state where no
progress is possible.
○ 5 philosophers/forks - deadlock after exploring 145 states
○ 10 philosophers/forks - deadlock after exploring 18,313 states
○ 15 philosophers/forks - deadlock after exploring 148,897 states
○ 9 philosophers/10 forks - deadlock found after exploring

404,796 states

25

Search Based on SAT

● Express properties as conjunctive normal
form expressions:
○ f = (!x2 || x5) && (x1 || !x3 || x4) &&

(x4 || ! x5) && (x1|| x2)
● Examine reachable states and choose a

transition based on how it affects the CNF
expression.
○ If we want x2 to be false, choose a transition that

imposes that change.
● Continue until CNF expression is satisfied.

26

Branch & Bound Algorithm

● Set a variable to a particular value
(true/false).

● Apply that value to the CNF expression.
● See whether that value satisfies all of the

clauses that it appears in.
○ If so, assign a value to the next variable.
○ If not, backtrack (bound) and apply the other value.

● Prune branches of the boolean decision tree
as values are applies.

27

Branch & Bound Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4
|| ! x5) && (x1|| x2)

1. Set x1 to false.
f = (!x2 || x5) && (0 || !x3 || x4) &&
(x4 || ! x5) && (0 || x2)

2. Set x2 to false.
f = (1 || x5) && (0 || !x3 || x4) && (x4
|| ! x5) && (0 || 0)

3. Backtrack and set x1 to true.
f = (0 || x5) && (0 || !x3 || x4) && (x4
|| ! x5) && (0 || 1)

28

DPLL Algorithm

● Set a variable to a particular value
(true/false).

● Apply that value to the CNF expression.
● If the value satisfies a clause, that clause is

removed from the formula.
● If the variable is negated, but does not

satisfy a clause, then the variable is
removed from that clause.

● Repeat until a solution is found.

29

DPLL Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4
|| ! x5) && (x1|| x2)

1. Set x2 to false.
f = (1 || x5) && (x1 || !x3 || x4) && (x4 || !
x5) && (x1|| 0)
f = (x1 || !x3 || x4) && (x4 || ! x5) && (x1)

2. Set x1 to true.
f = (1 || !x3 || x4) && (x4 || ! x5) && (1)
f = (x4 || ! x5)

3. Set x4 to false, then x5 to false.

30

Model Refinement

● Models have to balance precision with efficiency.
● Abstractions that are too simple may introduce spurious

failure paths that may not be in the real system.
● Models that are too complex may render model

checking infeasible due to resource exhaustion.

31

Intensional Models

● State space can be limited by replacing
extensional representations with intensional
representations
○ A positive even integer < 20:

■ Extensional: {2, 4, 6, 8, 10, 12, 14, 16, 18}
● (All concrete values)

■ Intensional: {x ∈ N | x mod 2 =0 ^ 0 < x < 20}
● (Symbolic representation)
● Equation called the characteristic function

○ A predicate true for all elements in the set of values and
false otherwise.

32

Ordered Binary Decision Diagrams

● We can represent whether or not there is a
transition between two states using a
characteristic function.
○ f(m,n) = true if there is a transition from m to n.

● OBDDs are a data structure representing the
calculation of a binary function.
○ Such as a characteristic function.
○ Can be used to represent a subset of the state

space.

33

OBDD Example

● !a v (b ^ c)
○ Can be thought of as

a function: f(a,b,c)
○ Returns true if the

property is satisfied,
false if not.

A
0 1

B
0 1

C
0 1

TF

34

Ordered Binary Decision Diagrams

● Built by iteratively expanding the set of
states reachable in k+1 steps.
○ Stabilizes when the number of transitions that can

occur in the next step are already included.
● Most basic form - what states can we reach

from the current state in n transitions?
● Often, merged with specification properties:

○ The set of transitions leading to a violation of the
property.

○ If that set if empty, the property is verified.
■ Symbolic model checking.

35

Building OBDDs

● Assign each state and
symbol a boolean label.

● Encode transitions as
tuples (sym, from, to)

X0
0 1

X1
0 1

X1
0 1

TF

X0 X1X2 X3X4

0 00 00

1 00 01

1 01 10

sym from state to state

S0 (00)

b(x0 == 0)

S1 (01) S2 (10)

b(x0 == 1) b(x0 == 1)

X2
0 1

X2
0 1

X3
0 1

X3
0 1

X3
0 1

X4
0 1

X4
0 1

36

Benefits of OBDDs

● OBDDS allow us to represent sets of states
symbolically.
○ Rather than reasoning over the entire state space,

we can reason over a small representation of a set
of states (the boolean characteristic function).

● Allows verification of much larger models
than explicit model checking.
○ As long as we can represent states with such a

function.
○ Best when there is a large degree of regularity in the

state space.

37

We Have Learned

● We can perform verification by creating
models of the system and proving that the
specification properties hold over the model.

● To do so, we must express specifications as
sets of logical formulae written in a temporal
logic.

● Finite state verification exhaustively
searches the state space for violations of
properties.

38

We Have Learned

● By performing this process, we can gain
confidence that the system will meet the
specifications.
○ We can even generate test cases from the model to

help demonstrate that properties still hold over the
final system.

39

Next Time

● Symbolic execution and proof of properties
● Reading: Chapter 7

● Homework:
○ Reading assignment 3 is out.

■ Steven P. Miller, Alan C. Tribble, Michael W.
Whalen, and Mats P.E. Heimdahl. Proving the
Shalls: Early Validation of Requirements Through
Formal Methods

■ Due April 4th.
○ Assignment 3 due tonight.

40

