Finite State Verification

CSCE 747 - Lecture 21 - 03/28/2017

So, You Want to Perform

Verification...

e You have a property that you want your
program to obey.

e Great! Let's write some tests!

e Does testing guarantee that the
requirement is met?

o Not quite...
m [esting can make a statistical argument in favor
of verification, but usually cannot guarantee that
the requirement holds in all situations.

Testing

iInputs.

e Any real system has a near-infinite number of possible

e Some faults trigger failures extremely rarely, or under

conditions that are hard to control and recreate

through testing.
e How can we prove that our
system meets the property?

What About a Model?

e \We have previously used models to analyze
programs, and to generate test cases.
e Models can be used to “tame” the complexity

of the program.

o Models are simpler than the real program.

o By abstracting away unnecessary details, we can
learn important insights.

e Perhaps models can be used to verify the
full programs!

What Can We Do With This Model?

a4 ™
sense pace
sense pace
[:] w public static void Main(){
System.out.printin(“Hell
Specification t D ~ o world!’):
timel timeOutt——»{(2) }
timeln timeQut
N J 4
simplePacing
o And If the model is And If the model accurately
If the model satisfies well-formed, consistent, represents the program.

the specification...

and complete.

If we can show that the model satisfies the
requirement, then the program should as well.

Finite-State Verification

e EXxpress specification as a set of logical
properties, written as Boolean formulae.

e Exhaustively search the state space of the
model for violations of those properties.

e |f the property holds -

proof that the model éﬂﬁ A
is correct. == .
e Contrast with testing - % -
no violation might just % -

mean bad tests.

Today’s Goals

e Formulating specification statements as

formal logical expressions.
o Introduction to temporal logic.

e Building behavioral models in NuSMV.
e Performing finite-state verification over the

model.
o Exhaustive search algorithms.

Expressing Specification
Statements as Provable Properties

Expressing Properties

e Properties expressed in a formal logic.
o Temporal logic ensures that properties hold over
execution paths, not just at a single point in time.

e Safety Properties
o System never reaches bad state.
o Always in some good state.

e Liveness Properties

o Eventually useful things happen.
o Fairness criteria.

Temporal Logic

e Sets of rules and symbolism for representing
propositions qualified over time.
e Linear Time Logic (LTL)

o Reason about events over a timeline.

e Computation Tree Logic (CTL)

o Branching logic that can reason about multiple
timelines.

e \We need both forms of logic - each can
express properties that the other cannot.

10

Linear Time Logic Formulae

Formulae written with propositional variables
(boolean properties), logical operators (and, or,
not, implication), and a set of modal operators:

X (next) X hunger In the next state, | will be hungry.

G (globally) | G hunger In all future states, | will be hungry.

F (finally) F hunger Eventually, there will be a state where | am hungry.
U (until) hunger U burger | will be hungry until | start to eat a burger.

R (release) hunger R burger | will cease to be hungry after | eat a burger.

11

LTL Examples

e X (next) - This operator provides a constraint

on the next moment in time.
o (sad && Irich) -> X(sad)
o ((x==0) && (add3)) -> X(x == 3)
e F (finally) - At some point in the future, this
property will be true.

o (funny && ownCamera) -> F(famous)
o sad -> F(happy)
o send -> F(receive)

12

LTL Examples

e G (globally) - This property must always be

true.
o winLottery -> G(rich)
e U (until) - One property must be true until the

second becomes true.

o startLecture -> (talk U endLecture)
o born -> (alive U dead)
o request -> (Ireply U acknowledgement)

13

More LTL Examples

G (requested -> F (received))
G (received -> X (processed))

G (processed -> F (G (done)))

If the above are true, can this be true?
o G (requested) && G (!done)

14

Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific

quantifiers:
A (all) A hunger Starting from the current state, | must be hungry on
all paths.
E (exists) E hunger There must be some path, starting from the current
state, where | am hungry.
X (next) X hunger In the next state on this path, | will be hungry.
G (globally) G hunger In all future states on this path, | will be hungry.
F (finally) F hunger Eventually on this path, there will be a state where | am
hungry.
U (until) hunger U burger On this path, | will be hungry until | start to eat a burger. (I
must eventually eat a burger)
W (weak until) | hunger W burger On this path, | will be hungry until | start to eat a burger.
(There is no guarantee that | eat a burger)

15

CTL Examples

chocolate = “| like chocolate.”
warm = “|t is warm outside.”

AG chocolate

EF chocolate

AF (EG chocolate)

EG (AF chocolate)

AG (chocolate U warm)

EF ((EX chocolate) U (AG warm))

16

e |t is always possible to reach a state where

we can reset.
o AG (EF reset)
o Is the LTL formula G (F reset) the same expression?

e Eventually, the system will reach a good
state and remain there.

o F (G good)
o lIs the CTL formula AF (AG good) the same?

17

Proving Properties Over Models

18

Building Models

e Many different modeling languages.

e Most verification tools use their own
language.

e Conceptually, most map to state machines.

©)
O
O

Define a list of variables.
Describe how their values are calculated.
Each “time step”, recalculate the values of these

variables.
The state is the current set of values for all variables.

19

Creating Models - Graphical

f) e Most common
sense pace n u
DW industrial framework:
timeln D timeOut
timeln timeQut
WAITING =0 ['sense]
[Isense] ke entry.during: e S,
. 7= pace=0; =
// S [timeln-lastMinute > 60 && !se%
INIT s i :
entry: [lsense] \ !
lastMinute=timeln; [sense] TR PACE
pace=0; =] entry:
timeOut=timeln; 21\\ lastMinute=timeln;
pace=1;
[sense] Y timeOut=timeln;
SENSE ’
entry,during: /2
- lastMinute=timeln;
: pace=0; - [sense] ’/
timeOut=timeln; -

20

Creating Models - Written Language

MODULE main :
e NuSMV modeling

VAR |
request: boolean; anguage
status: {ready, busy};
ASSIGN e Partofa
init(status) := ready; framework for

t(status) := :
nexi(status) model analysis.
case

status=ready & request: busy;
status=ready & Irequest : ready;

TRUE: {ready, busy};

esSac,
21

Proving Properties

e To perform verification, we take properties
and exhaustively search the state space of
the model for violations.

e Violations give us counter-examples
o A path that demonstrates how the property has been
violated.

e Implications:
o Property is incorrect.
o Model does not reflect expected behavior.
o Real issue found in the system being designed.

22

Test Generation from FS Verification

e \We can also take properties and negate
them.

o Called a “trap property” - we assert that a property
can never be met.

e The counter-example shows one way the
property can be met.

e This can be used as a test for the real
system - to demonstrate that the final system
meets its specification.

23

Exhaustive Search

e Algorithms exhaustively comb through the possible
execution paths through the model.
e Major limitation - state space explosion.

M o d el GPS Position Docking Sensor

And More...

Approach Approach Standoff Standoff
GPS Lock GPS Acquife GPS Acquife GPS Lock
Not Lockef Locked Not Locket Not Locket

4| ‘4 A 2 ,//
Ready to Rock
GPS Lock
NatiLackad Ready to Qock
GPS Lock
A “ Locked

Adopted from Prof. Heindah!

' 24

Exhaustive Search - Dining

Philosophers

e Problem - X philosophers sit at a table with Y
forks between them. Philosophers may think
or eat. When they eat, they need two forks.

e Goal is to avoid deadlock - a state where no
progress is possible.

O

©)
©)
©)

5 philosophers/forks - deadlock after exploring 145 states

10 philosophers/forks - deadlock after exploring 18,313 states
15 philosophers/forks - deadlock after exploring 148,897 states
9 philosophers/10 forks - deadlock found after exploring
404,796 states

25

Search Based on SAT

e EXpress properties as conjunctive normal

form expressions:
o £ = (!x2 || x5) && (x1 || !'x3 || x4) &&
(x4 || ! x5) && (x1]|] x2)

e Examine reachable states and choose a
transition based on how it affects the CNF

expression.

o |f we want x2 to be false, choose a transition that
Imposes that change.

e Continue until CNF expression is satisfied.

26

Branch & Bound Algorithm

e Set a variable to a particular value
(true/false).

e Apply that value to the CNF expression.

e See whether that value satisfies all of the

clauses that it appears in.
o If so, assign a value to the next variable.
o If not, backtrack (bound) and apply the other value.

e Prune branches of the boolean decision tree
as values are applies.

27

Branch & Bound Algorithm

= (!'x2 || xb5) && (x1 || !'x3 || x4) && (x4

' x5) && (x1|]| x2)

. Set x1 to false.

f = (!'x2 || x5) && (0 || 'x3 || x4) &&
(x4 || ' x5) && (0 || x2)

Set x2 to false.

f = (1 || x5) && (0 || 'x3 || x4) && (x4

|| ! x5) && (0 || 0)

Backtrack and set x1 to true.

f = (0 || x5) && (0 || 'x3 || x4) && (x4
| ! x5) && (0 || 1)

28

DPLL Algorithm

e Set a variable to a particular value
(true/false).

e Apply that value to the CNF expression.

e [f the value satisfies a clause, that clause is
removed from the formula.

e [f the variable is negated, but does not
satisfy a clause, then the variable is
removed from that clause.

e Repeat until a solution is found.

29

DPLL Algorithm

= (!'x2 || xb5) && (x1 || !'x3 || x4) && (x4

' x5) && (x1|]| x2)

Set x2 to false.

f = (1 || x5) && (x1 || !'x3 || x4) && (x4 || !
x5) && (x1]] 0)

f = (x1 || 'x3 || x4) && (x4 || ! xb5) && (x1)
Set x1 to true.

f = (1 || 'x3 || x4) && (x4 || ! x5) && (1)

f = (x4 || ! xb)

3. Set x4 to false, then x5 to false.

30

Model Refinement

e Models have to balance precision with efficiency.

e Abstractions that are too simple may introduce spurious
failure paths that may not be in the real system.

e Models that are too complex may render model
checking infeasible due to resource exhaustion.

CONStruct an
initial model

attempt verification

exh?usts L spurious
computationa gasciibke

resources \

abstract the model make the model
further more precise

I |

31

Intensional Models

e State space can be limited by replacing
extensional representations with intensional

representations

o A positive even integer < 20:
m Extensional: {2, 4, 6, 8, 10, 12, 14, 16, 18}

e (All concrete values)
m Intensional: {x € N|xmod2=0"0<x<20}
e (Symbolic representation)
e Equation called the characteristic function
o A predicate true for all elements in the set of values and
false otherwise.

32

Ordered Binary Decision Diagrams

e \We can represent whether or not there is a
transition between two states using a

characteristic function.
o f(m,n) = true if there is a transition from m to n.
e OBDDs are a data structure representing the

calculation of a binary function.
o Such as a characteristic function.

o Can be used to represent a subset of the state
space.

33

OBDD Example

e lav(b”c) A

o Can be thought of as j/ﬁ

a function: f(a,b,c)

o Returns true if the B
property is satisfied, e

false if not. |
s H\

%F T,

34

Ordered Binary Decision Diagrams

e Built by iteratively expanding the set of

states reachable in k+1 steps.
o Stabilizes when the number of transitions that can
occur in the next step are already included.

e Most basic form - what states can we reach
from the current state in n transitions?

e Often, merged with specification properties:
o The set of transitions leading to a violation of the
property.
o If that set if empty, the property is verified.
m Symbolic model checking.

35

Building OBDDs

e Assign each state and
symbol a boolean label.

L)

b(x0 == 1) b(x0 == 1)

b(x0 == 0)

e Encode transitions as
tuples (sym, from, to)

X0

X1X2

X3X4

0

00

00

1

00

01

1

01

10

sym

from state

to state

36

Benefits of OBDDs

e OBDDS allow us to represent sets of states

symbolically.

o Rather than reasoning over the entire state space,
we can reason over a small representation of a set
of states (the boolean characteristic function).

e Allows verification of much larger models

than explicit model checking.

o As long as we can represent states with such a
function.

o Best when there is a large degree of regularity in the
state space.

37

We Have Learned

e \We can perform verification by creating
models of the system and proving that the
specification properties hold over the model.

e To do so, we must express specifications as
sets of logical formulae written in a temporal
logic.

e Finite state verification exhaustively
searches the state space for violations of
properties.

38

We Have Learned

e By performing this process, we can gain
confidence that the system will meet the

specifications.

o We can even generate test cases from the model to
help demonstrate that properties still hold over the
final system.

39

Next Time

e Symbolic execution and proof of properties
e Reading: Chapter 7

e Homework:
o Reading assignment 3 is out.
m Steven P. Miller, Alan C. Tribble, Michael W.
Whalen, and Mats P.E. Heimdahl. Proving the
Shalls: Early Validation of Requirements Through
Formal Methods
m Due April 4th.
o Assignment 3 due tonight.

40

