Finite State Verification
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So, You Want to Perform

Verification...

e You have a property that you want your
program to obey.

e Great! Let's write some tests!

e Does testing guarantee that the
requirement is met?

o Not quite...
m [esting can make a statistical argument in favor
of verification, but usually cannot guarantee that
the requirement holds in all situations.



Testing

iInputs.

e Any real system has a near-infinite number of possible

e Some faults trigger failures extremely rarely, or under

conditions that are hard to control and recreate

through testing.
e How can we prove that our
system meets the property?




What About a Model?

e \We have previously used models to analyze
programs, and to generate test cases.
e Models can be used to “tame” the complexity

of the program.

o Models are simpler than the real program.

o By abstracting away unnecessary details, we can
learn important insights.

e Perhaps models can be used to verify the
full programs!



What Can We Do With This Model?
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and complete.

If we can show that the model satisfies the
requirement, then the program should as well.



Finite-State Verification

e EXxpress specification as a set of logical
properties, written as Boolean formulae.

e Exhaustively search the state space of the
model for violations of those properties.

e |f the property holds -

proof that the model éﬂﬁ A
is correct. == .
e Contrast with testing - % -
no violation might just % -

mean bad tests.



Today’s Goals

e Formulating specification statements as

formal logical expressions.
o Introduction to temporal logic.

e Building behavioral models in NuSMV.
e Performing finite-state verification over the

model.
o Exhaustive search algorithms.



Expressing Specification
Statements as Provable Properties



Expressing Properties

e Properties expressed in a formal logic.
o Temporal logic ensures that properties hold over
execution paths, not just at a single point in time.

e Safety Properties
o System never reaches bad state.
o Always in some good state.

e Liveness Properties

o Eventually useful things happen.
o Fairness criteria.



Temporal Logic

e Sets of rules and symbolism for representing
propositions qualified over time.
e Linear Time Logic (LTL)

o Reason about events over a timeline.

e Computation Tree Logic (CTL)

o Branching logic that can reason about multiple
timelines.

e \We need both forms of logic - each can
express properties that the other cannot.
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Linear Time Logic Formulae

Formulae written with propositional variables
(boolean properties), logical operators (and, or,
not, implication), and a set of modal operators:

X (next) X hunger In the next state, | will be hungry.

G (globally) | G hunger In all future states, | will be hungry.

F (finally) F hunger Eventually, there will be a state where | am hungry.
U (until) hunger U burger | will be hungry until | start to eat a burger.

R (release) hunger R burger | will cease to be hungry after | eat a burger.
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LTL Examples

e X (next) - This operator provides a constraint

on the next moment in time.
o (sad && Irich) -> X(sad)
o ((x==0) && (add3)) -> X(x == 3)
e F (finally) - At some point in the future, this
property will be true.

o (funny && ownCamera) -> F(famous)
o sad -> F(happy)
o send -> F(receive)
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LTL Examples

e G (globally) - This property must always be

true.
o winLottery -> G(rich)
e U (until) - One property must be true until the

second becomes true.

o startLecture -> (talk U endLecture)
o born -> (alive U dead)
o request -> (Ireply U acknowledgement)
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More LTL Examples

G (requested -> F (received))
G (received -> X (processed))

G (processed -> F (G (done)))

If the above are true, can this be true?
o G (requested) && G (!done)
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Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific

quantifiers:
A (all) A hunger Starting from the current state, | must be hungry on
all paths.
E (exists) E hunger There must be some path, starting from the current
state, where | am hungry.
X (next) X hunger In the next state on this path, | will be hungry.
G (globally) G hunger In all future states on this path, | will be hungry.
F (finally) F hunger Eventually on this path, there will be a state where | am
hungry.
U (until) hunger U burger On this path, | will be hungry until | start to eat a burger. (I
must eventually eat a burger)
W (weak until) | hunger W burger On this path, | will be hungry until | start to eat a burger.
(There is no guarantee that | eat a burger)
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CTL Examples

chocolate = “| like chocolate.”
warm = “|t is warm outside.”

AG chocolate

EF chocolate

AF (EG chocolate)

EG (AF chocolate)

AG (chocolate U warm)

EF ((EX chocolate) U (AG warm))

16



e |t is always possible to reach a state where

we can reset.
o AG (EF reset)
o Is the LTL formula G (F reset) the same expression?

e Eventually, the system will reach a good
state and remain there.

o F (G good)
o lIs the CTL formula AF (AG good) the same?
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Proving Properties Over Models
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Building Models

e Many different modeling languages.

e Most verification tools use their own
language.

e Conceptually, most map to state machines.

©)
O
O

Define a list of variables.
Describe how their values are calculated.
Each “time step”, recalculate the values of these

variables.
The state is the current set of values for all variables.
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Creating Models - Graphical

f ) e Most common
sense pace n u
DW industrial framework:
timeln D timeOut
timeln timeQut
WAITING =0 ['sense]
[Isense] ke entry.during: e S,
. 7= pace=0; =
// S [timeln-lastMinute > 60 && !se%
INIT s i :
entry: [lsense] \ !
lastMinute=timeln; [sense] TR PACE
pace=0; =] entry:
timeOut=timeln; 21\\ lastMinute=timeln;
pace=1;
[sense] Y timeOut=timeln;
SENSE ’
entry,during: /2
- lastMinute=timeln;
: pace=0; - [sense] ’/
timeOut=timeln; -

20



Creating Models - Written Language

MODULE main :
e NuSMV modeling

VAR |
request: boolean; anguage
status: {ready, busy};
ASSIGN e Partofa
init(status) := ready; framework for

t(status) := :
nexi(status) model analysis.
case

status=ready & request: busy;
status=ready & Irequest : ready;

TRUE: {ready, busy};

esSac,
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Proving Properties

e To perform verification, we take properties
and exhaustively search the state space of
the model for violations.

e Violations give us counter-examples
o A path that demonstrates how the property has been
violated.

e Implications:
o Property is incorrect.
o Model does not reflect expected behavior.
o Real issue found in the system being designed.
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Test Generation from FS Verification

e \We can also take properties and negate
them.

o Called a “trap property” - we assert that a property
can never be met.

e The counter-example shows one way the
property can be met.

e This can be used as a test for the real
system - to demonstrate that the final system
meets its specification.
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Exhaustive Search

e Algorithms exhaustively comb through the possible
execution paths through the model.
e Major limitation - state space explosion.

M o d el GPS Position Docking Sensor

And More...
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A “ Locked

Adopted from Prof. Heindah!
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Exhaustive Search - Dining

Philosophers

e Problem - X philosophers sit at a table with Y
forks between them. Philosophers may think
or eat. When they eat, they need two forks.

e Goal is to avoid deadlock - a state where no
progress is possible.

O

©)
©)
©)

5 philosophers/forks - deadlock after exploring 145 states

10 philosophers/forks - deadlock after exploring 18,313 states
15 philosophers/forks - deadlock after exploring 148,897 states
9 philosophers/10 forks - deadlock found after exploring
404,796 states
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Search Based on SAT

e EXpress properties as conjunctive normal

form expressions:
o £ = (!x2 || x5) && (x1 || !'x3 || x4) &&
(x4 || ! x5) && (x1]|] x2)

e Examine reachable states and choose a
transition based on how it affects the CNF

expression.

o |f we want x2 to be false, choose a transition that
Imposes that change.

e Continue until CNF expression is satisfied.
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Branch & Bound Algorithm

e Set a variable to a particular value
(true/false).

e Apply that value to the CNF expression.

e See whether that value satisfies all of the

clauses that it appears in.
o If so, assign a value to the next variable.
o If not, backtrack (bound) and apply the other value.

e Prune branches of the boolean decision tree
as values are applies.
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Branch & Bound Algorithm

= (!'x2 || xb5) && (x1 || !'x3 || x4) && (x4

' x5) && (x1|]| x2)

. Set x1 to false.

f = (!'x2 || x5) && (0 || 'x3 || x4) &&
(x4 || ' x5) && (0 || x2)

Set x2 to false.

f = (1 || x5) && (0 || 'x3 || x4) && (x4

|| ! x5) && (0 || 0)

Backtrack and set x1 to true.

f = (0 || x5) && (0 || 'x3 || x4) && (x4
| ! x5) && (0 || 1)
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DPLL Algorithm

e Set a variable to a particular value
(true/false).

e Apply that value to the CNF expression.

e [f the value satisfies a clause, that clause is
removed from the formula.

e [f the variable is negated, but does not
satisfy a clause, then the variable is
removed from that clause.

e Repeat until a solution is found.
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DPLL Algorithm

= (!'x2 || xb5) && (x1 || !'x3 || x4) && (x4

' x5) && (x1|]| x2)

Set x2 to false.

f = (1 || x5) && (x1 || !'x3 || x4) && (x4 || !
x5) && (x1]] 0)

f = (x1 || 'x3 || x4) && (x4 || ! xb5) && (x1)
Set x1 to true.

f = (1 || 'x3 || x4) && (x4 || ! x5) && (1)

f = (x4 || ! xb)

3. Set x4 to false, then x5 to false.
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Model Refinement

e Models have to balance precision with efficiency.

e Abstractions that are too simple may introduce spurious
failure paths that may not be in the real system.

e Models that are too complex may render model
checking infeasible due to resource exhaustion.

CONStruct an
initial model

attempt verification

exh?usts L spurious
computationa gasciibke

resources \

abstract the model make the model
further more precise

I |
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Intensional Models

e State space can be limited by replacing
extensional representations with intensional

representations

o A positive even integer < 20:
m Extensional: {2, 4, 6, 8, 10, 12, 14, 16, 18}

e (All concrete values)
m Intensional: {x € N|xmod2=0"0<x<20}
e (Symbolic representation)
e Equation called the characteristic function
o A predicate true for all elements in the set of values and
false otherwise.
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Ordered Binary Decision Diagrams

e \We can represent whether or not there is a
transition between two states using a

characteristic function.
o f(m,n) = true if there is a transition from m to n.
e OBDDs are a data structure representing the

calculation of a binary function.
o Such as a characteristic function.

o Can be used to represent a subset of the state
space.
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OBDD Example

e lav(b”c) A

o Can be thought of as j/ﬁ

a function: f(a,b,c)

o Returns true if the B
property is satisfied, e

false if not. |
s H\

%F T,
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Ordered Binary Decision Diagrams

e Built by iteratively expanding the set of

states reachable in k+1 steps.
o Stabilizes when the number of transitions that can
occur in the next step are already included.

e Most basic form - what states can we reach
from the current state in n transitions?

e Often, merged with specification properties:
o The set of transitions leading to a violation of the
property.
o If that set if empty, the property is verified.
m Symbolic model checking.
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Building OBDDs

e Assign each state and
symbol a boolean label.

L)

b(x0 == 1) b(x0 == 1)

b(x0 == 0)

e Encode transitions as
tuples (sym, from, to)

X0

X1X2

X3X4

0

00

00

1

00

01

1

01

10

sym

from state

to state
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Benefits of OBDDs

e OBDDS allow us to represent sets of states

symbolically.

o Rather than reasoning over the entire state space,
we can reason over a small representation of a set
of states (the boolean characteristic function).

e Allows verification of much larger models

than explicit model checking.

o As long as we can represent states with such a
function.

o Best when there is a large degree of regularity in the
state space.
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We Have Learned

e \We can perform verification by creating
models of the system and proving that the
specification properties hold over the model.

e To do so, we must express specifications as
sets of logical formulae written in a temporal
logic.

e Finite state verification exhaustively
searches the state space for violations of
properties.
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We Have Learned

e By performing this process, we can gain
confidence that the system will meet the

specifications.

o We can even generate test cases from the model to
help demonstrate that properties still hold over the
final system.
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Next Time

e Symbolic execution and proof of properties
e Reading: Chapter 7

e Homework:
o Reading assignment 3 is out.
m Steven P. Miller, Alan C. Tribble, Michael W.
Whalen, and Mats P.E. Heimdahl. Proving the
Shalls: Early Validation of Requirements Through
Formal Methods
m Due April 4th.
o Assignment 3 due tonight.
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