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So, You Want to Perform 
Verification...

● You have a property that you want your 
program to obey.

● Great! Let’s write some tests!
● Does testing guarantee that the 

requirement is met? 
○ Not quite…

■ Testing can make a statistical argument in favor 
of verification, but usually cannot guarantee that 
the requirement holds in all situations.
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Testing

● Any real system has a near-infinite number of possible 
inputs.

● Some faults trigger failures extremely rarely, or under 
conditions that are hard to control and recreate 
through testing.

● How can we prove that our 
system meets the property?

3



What About a Model?

● We have previously used models to analyze 
programs, and to generate test cases.

● Models can be used to “tame” the complexity 
of the program.
○ Models are simpler than the real program.
○ By abstracting away unnecessary details, we can 

learn important insights.
● Perhaps models can be used to verify the 

full programs!
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What Can We Do With This Model?

If we can show that the model satisfies the 
requirement, then the program should as well.

Specification 

public static void Main(){
System.out.println(“Hell

o world!”);
}

If the model satisfies 
the specification...

And If the model is 
well-formed, consistent, 
and complete.

And If the model accurately 
represents the program.
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Finite-State Verification

● Express specification as a set of logical 
properties, written as Boolean formulae.

● Exhaustively search the state space of the 
model for violations of those properties.

● If the property holds -
proof that the model
is correct.

● Contrast with testing -
no violation might just
mean bad tests.
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Today’s Goals

● Formulating specification statements as 
formal logical expressions.
○ Introduction to temporal logic.

● Building behavioral models in NuSMV.
● Performing finite-state verification over the 

model.
○ Exhaustive search algorithms.
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Expressing Specification 
Statements as Provable Properties
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Expressing Properties

● Properties expressed in a formal logic.
○ Temporal logic ensures that properties hold over 

execution paths, not just at a single point in time.
● Safety Properties

○ System never reaches bad state.
○ Always in some good state.

● Liveness Properties
○ Eventually useful things happen.
○ Fairness criteria.
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Temporal Logic

● Sets of rules and symbolism for representing 
propositions qualified over time. 

● Linear Time Logic (LTL)
○ Reason about events over a timeline.

● Computation Tree Logic (CTL)
○ Branching logic that can reason about multiple 

timelines.
● We need both forms of logic - each can 

express properties that the other cannot.
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Linear Time Logic Formulae

Formulae written with propositional variables 
(boolean properties), logical operators (and, or, 
not, implication), and a set of modal operators:

X (next) X hunger In the next state, I will be hungry.

G (globally) G hunger In all future states, I will be hungry.

F (finally) F hunger Eventually, there will be a state where I am hungry.

U (until) hunger U burger I will be hungry until I start to eat a burger.

R (release) hunger R burger I will cease to be hungry after I eat a burger.
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LTL Examples

● X (next) - This operator provides a constraint 
on the next moment in time.
○ (sad && !rich) -> X(sad)
○ ((x==0) && (add3)) -> X(x == 3)

● F (finally) - At some point in the future, this 
property will be true.
○ (funny && ownCamera) -> F(famous)
○ sad -> F(happy)
○ send -> F(receive)
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LTL Examples

● G (globally) - This property must always be 
true.
○ winLottery -> G(rich)

● U (until) - One property must be true until the 
second becomes true.
○ startLecture -> (talk U endLecture)
○ born -> (alive U dead)
○ request -> (!reply U acknowledgement)
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More LTL Examples

● G (requested -> F (received))
● G (received -> X (processed))
● G (processed -> F (G (done)))
● If the above are true, can this be true?

○ G (requested) && G (!done)

14



Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific 
quantifiers:

X (next) X hunger In the next state on this path, I will be hungry.

G (globally) G hunger In all future states on this path, I will be hungry.

F (finally) F hunger Eventually on this path, there will be a state where I am 
hungry.

U (until) hunger U burger On this path, I will be hungry until I start to eat a burger. (I 
must eventually eat a burger)

W (weak until) hunger W burger On this path, I will be hungry until I start to eat a burger. 
(There is no guarantee that I eat a burger)

A (all) A hunger Starting from the current state, I must be hungry on 
all paths.

E (exists) E hunger There must be some path, starting from the current 
state, where I am hungry.
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CTL Examples

● chocolate = “I like chocolate.” 
● warm = “It is warm outside.”
● AG chocolate
● EF chocolate
● AF (EG chocolate)
● EG (AF chocolate)
● AG (chocolate U warm)
● EF ((EX chocolate) U (AG warm))
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Examples

● It is always possible to reach a state where 
we can reset.
○ AG (EF reset)
○ Is the LTL formula G (F reset) the same expression?

● Eventually, the system will reach a good 
state and remain there.
○ F (G good)
○ Is the CTL formula AF (AG good) the same?
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Proving Properties Over Models
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Building Models

● Many different modeling languages.
● Most verification tools use their own 

language.
● Conceptually, most map to state machines.

○ Define a list of variables.
○ Describe how their values are calculated.
○ Each “time step”, recalculate the values of these 

variables.
○ The state is the current set of values for all variables. 
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Creating Models - Graphical

● Most common 
industrial framework: 
Stateflow
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Creating Models - Written Language
MODULE main 
VAR 
request: boolean; 
status: {ready, busy}; 
ASSIGN 
init(status) := ready; 
next(status) := 
case 

status=ready & request: busy; 
status=ready & !request : ready;
TRUE: {ready, busy}; 

esac;

● NuSMV modeling 
language

● Part of a 
framework for 
model analysis.
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Proving Properties

● To perform verification, we take properties 
and exhaustively search the state space of 
the model for violations.

● Violations give us counter-examples
○ A path that demonstrates how the property has been 

violated. 
● Implications:

○ Property is incorrect.
○ Model does not reflect expected behavior.
○ Real issue found in the system being designed.
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Test Generation from FS Verification

● We can also take properties and negate 
them.
○ Called a “trap property” - we assert that a property 

can never be met.
● The counter-example shows one way the 

property can be met.
● This can be used as a test for the real 

system - to demonstrate that the final system 
meets its specification.
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Exhaustive Search

● Algorithms exhaustively comb through the possible 
execution paths through the model.

● Major limitation - state space explosion.

24



Exhaustive Search - Dining 
Philosophers

● Problem - X philosophers sit at a table with Y 
forks between them. Philosophers may think 
or eat. When they eat, they need two forks.

● Goal is to avoid deadlock - a state where no 
progress is possible.
○ 5 philosophers/forks - deadlock after exploring 145 states
○ 10 philosophers/forks - deadlock after exploring 18,313 states
○ 15 philosophers/forks - deadlock after exploring 148,897 states 
○ 9 philosophers/10 forks - deadlock found after exploring 

404,796 states
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Search Based on SAT

● Express properties as conjunctive normal 
form expressions: 
○ f = (!x2 || x5) && (x1 || !x3 || x4) && 

(x4 || ! x5) && (x1|| x2) 
● Examine reachable states and choose a 

transition based on how it affects the CNF 
expression.
○ If we want x2 to be false, choose a transition that 

imposes that change.
● Continue until CNF expression is satisfied.
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Branch & Bound Algorithm

● Set a variable to a particular value 
(true/false).

● Apply that value to the CNF expression.
● See whether that value satisfies all of the 

clauses that it appears in.
○ If so, assign a value to the next variable.
○ If not, backtrack (bound) and apply the other value.

● Prune branches of the boolean decision tree 
as values are applies.
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Branch & Bound Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4 
|| ! x5) && (x1|| x2) 

1. Set x1 to false.
f = (!x2 || x5) && (0 || !x3 || x4) && 
(x4 || ! x5) && (0 || x2) 

2. Set x2 to false.
f = (1 || x5) && (0 || !x3 || x4) && (x4 
|| ! x5) && (0 || 0) 

3. Backtrack and set x1 to true.
f = (0 || x5) && (0 || !x3 || x4) && (x4 
|| ! x5) && (0 || 1) 
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DPLL Algorithm

● Set a variable to a particular value 
(true/false).

● Apply that value to the CNF expression.
● If the value satisfies a clause, that clause is 

removed from the formula. 
● If the variable is negated, but does not 

satisfy a clause, then the variable is 
removed from that clause.

● Repeat until a solution is found.
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DPLL Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4 
|| ! x5) && (x1|| x2) 

1. Set x2 to false.
f = (1 || x5) && (x1 || !x3 || x4) && (x4 || ! 
x5) && (x1|| 0)  
f = (x1 || !x3 || x4) && (x4 || ! x5) && (x1) 

2. Set x1 to true.
f = (1 || !x3 || x4) && (x4 || ! x5) && (1) 
f = (x4 || ! x5) 

3. Set x4 to false, then x5 to false.
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Model Refinement

● Models have to balance precision with efficiency.
● Abstractions that are too simple may introduce spurious 

failure paths that may not be in the real system.
● Models that are too complex may render model 

checking infeasible due to resource exhaustion.
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Intensional Models

● State space can be limited by replacing 
extensional representations with intensional 
representations
○ A positive even integer < 20:

■ Extensional: {2, 4, 6, 8, 10, 12, 14, 16, 18}
● (All concrete values)

■ Intensional: {x ∈ N | x mod 2 =0 ^ 0 < x < 20}
● (Symbolic representation)
● Equation called the characteristic function

○ A predicate true for all elements in the set of values and 
false otherwise.
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Ordered Binary Decision Diagrams

● We can represent whether or not there is a  
transition between two states using a 
characteristic function.
○ f(m,n) = true if there is a transition from m to n.

● OBDDs are a data structure representing the 
calculation of a binary function.
○ Such as a characteristic function.
○ Can be used to represent a subset of the state 

space.
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OBDD Example

● !a v (b ^ c)
○ Can be thought of as 

a function: f(a,b,c)
○ Returns true if the 

property is satisfied, 
false if not. 

A
0 1

B
0 1

C
0 1

TF
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Ordered Binary Decision Diagrams

● Built by iteratively expanding the set of 
states reachable in k+1 steps. 
○ Stabilizes when the number of transitions that can 

occur in the next step are already included.
● Most basic form - what states can we reach 

from the current state in n transitions?
● Often, merged with specification properties:

○ The set of transitions leading to a violation of the 
property.

○ If that set if empty, the property is verified.
■ Symbolic model checking.
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Building OBDDs

● Assign each state and 
symbol a boolean label.

● Encode transitions as 
tuples (sym, from, to)

X0
0 1

X1
0 1

X1
0 1

TF

X0 X1X2 X3X4

0 00 00

1 00 01

1 01 10

sym from state to state

S0 (00)

b(x0 == 0)

S1 (01) S2 (10)

b(x0 == 1) b(x0 == 1)

X2
0 1

X2
0 1

X3
0 1

X3
0 1

X3
0 1

X4
0 1

X4
0 1
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Benefits of OBDDs

● OBDDS allow us to represent sets of states 
symbolically.
○ Rather than reasoning over the entire state space, 

we can reason over a small representation of a set 
of states (the boolean characteristic function).

● Allows verification of much larger models 
than explicit model checking.
○ As long as we can represent states with such a 

function.
○ Best when there is a large degree of regularity in the 

state space.
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We Have Learned

● We can perform verification by creating 
models of the system and proving that the 
specification properties hold over the model.

● To do so, we must express specifications as 
sets of logical formulae written in a temporal 
logic.

● Finite state verification exhaustively 
searches the state space for violations of 
properties.
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We Have Learned

● By performing this process, we can gain 
confidence that the system will meet the 
specifications.
○ We can even generate test cases from the model to 

help demonstrate that properties still hold over the 
final system.
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Next Time

● Symbolic execution and proof of properties
● Reading: Chapter 7

● Homework:
○ Reading assignment 3 is out.

■ Steven P. Miller, Alan C. Tribble, Michael W. 
Whalen, and Mats P.E. Heimdahl. Proving the 
Shalls: Early Validation of Requirements Through 
Formal Methods

■ Due April 4th.
○ Assignment 3 due tonight.
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