
Modeling Software
Behavior
CSCE 747 - Lecture 3 - 01/17/2017

Models and Software Analysis

● Before and while building products,
engineers analyze models to address design
questions.

● Software is no different.
● Software models capture different ways that

the software behaves during execution.

Gregory Gay CSCE 747 - Spring 2017 2

Models and Software Analysis

● Models address two problems:
○ Analysis and testing cannot wait until a product is

finished.
○ The finished product is often too complex to analyze

“as-is”.
● Today: building behavioral models.

○ Directed graphs.
○ Control-Flow graphs.
○ Call graphs.
○ Finite state machines.

Gregory Gay CSCE 747 - Spring 2017 3

Behavior Modeling

● Abstraction - simplify a problem by
identifying and focusing on important
aspects while ignoring all other details.

● Key to solving many computing problems.
○ Solve a simpler version, then apply to the big

problem.
● A model is a simplified representation of an

artifact, focusing on one facet of that artifact.
○ The model ignores all other elements of that artifact.

Gregory Gay CSCE 747 - Spring 2017 4

Models

● A model is a simplified representation of an
artifact, focusing on one facet of that artifact.
○ The model ignores all other elements of that artifact.

● By abstracting away unnecessary details,
extremely powerful analyses can be
performed.

● Model must preserve enough of the artifact
that results hold.

Gregory Gay CSCE 747 - Spring 2017 5

Model Properties

To be useful, a model must be:
● Compact

○ Models must be simplified enough to be analyzed.
○ “How simple” depends on how it will be used.

● Predictive
○ Represent the real system well enough to distinguish

between good and bad outcomes of analyses.
○ No single model usually represents all

characteristics of the system well enough for all
types of analysis.

Gregory Gay CSCE 747 - Spring 2017 6

Model Properties

To be useful, a model must be:
● Meaningful

○ Must provide more information than success and
failure. Must allow diagnoses of the causes of
failure.

● Sufficiently General
○ Models must be practical for use in the domain of

interest.
○ An analysis of C programs is not useful if it only

works for programs without pointers.

Gregory Gay CSCE 747 - Spring 2017 7

Directed Graphs

A directed graph is composed
of a set of nodes N and a
relation E on the set (a set of
ordered pairs, called edges).
● Nodes represent program

entities.
● Edges represent relations

between entities.
○ i.e., flow of execution.

Gregory Gay CSCE 747 - Spring 2017 8

A

B C

Finite Abstraction

● A program execution can be viewed as a
sequence of states alternating with actions.

● Software “behavior” is a sequence of
state-action-state transitions.

● The set of all possible behavior sequences is
often infinite.
○ Called the “state space” of the program.
○ Models of execution are abstractions of the

program’s state space.

Gregory Gay CSCE 747 - Spring 2017 9

Abstraction Functions

● We can link a concrete state to a model
state through an abstraction function.
○ Translates the real program to a model by stripping

away details.
○ Groups states that only differ through details

abstracted from the model.
○ This has two effects:

■ Sequences of transitions are collapsed into fewer
execution steps.

■ Nondeterminism can be introduced.

Gregory Gay CSCE 747 - Spring 2016 10

Abstraction Functions

This has two effects:
● Sequences of

transitions are
collapsed into fewer
execution steps.

● Nondeterminism
can be introduced.

Gregory Gay CSCE 747 - Spring 2017 11

x = 0;
y = 0;
z = 0;

x = 0;
y = 0;
z = 1;

x = 0;
y = 1;
z = 0;

x = 0;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program:

Model:

x = 0;
y = 0;
z = 0;

x = 0;
y = 1;
z = 0;

x = 0;
y = 0;
z = 1;

x = 1;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program: Model:

x = 1;
y = 1;

Types of Models

● Two main “views” of program behavior:
○ Code-Based

■ Visualization of paths of execution (where states
are code locations)

■ Often used to guide test generation.
○ Behavior-Based

■ Mapping of functionality to a series of abstract
program states. Not directly linked to code
statements.

● Used to analyze correctness, usability,
security, architectural health, etc.

Gregory Gay CSCE 747 - Spring 2017 12

Code-Based Models

Control-Flow Graphs

● A directed graph representing the flow of
control through the program.
○ Nodes represent sequential blocks of program

commands.

○ Edges connect nodes in the sequence they are
executed. Multiple edges indicate conditional
statements (loops, if statements, switches).
■ Warning: depicts all defined paths, even if

impossible to actually execute.

Gregory Gay CSCE 747 - Spring 2017 14

1 if (1==x) {
2 y=45;
3 }
4 else {
5 y=23456;
6 }
7 /* continue */

If-then-else

y=45; y=23456;

/* continue */

1==x

T F

Gregory Gay CSCE 747 - Spring 2017 15

1 while (1<x) {
2 x--;
3 }
4 /* continue */

Loop

x--;
/* continue */

1<x

T F

Gregory Gay CSCE 747 - Spring 2017 16

Case

1 switch (test) {
2 case 1 : ...
3 case 2 : ...
4 case 3 : ...
5 }
6 /* continue */

case 1... case 3...

/* continue */

test

case 2...

Gregory Gay CSCE 747 - Spring 2017 17

Basic Blocks
● Nodes represent basic

blocks - a set of
sequentially executed
instructions with a single
entry and exit point.

● Typically a set of
adjacent statements, but
a statement might be
broken up into multiple
blocks to model control
flow in the statement.

Gregory Gay CSCE 747 - Spring 2017 18

for(int i=0; i < 10; i++){

sum += i;

}

int i = 0;

i < 10
F

sum += i;
i++;

T

Control Flow Graph Example
public static String collapseNewlines(String

argSt){

char last = argStr.charAt(0);

StringBuffer argBuf = new StringBuffer();

for(int cldx = 0; cldx < argStr.length();

cldx++){

char ch = argStr.charAt(cldx);

if (ch != ‘\n’ || last != ‘\n’){

argBuf.append(ch);

last = ch;

{

}

return argBuf.toString();

}

Gregory Gay CSCE 747 - Spring 2017 19

collapseNewlines(String argSt)

char last =
argStr.charAt(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.le
ngth();

char ch = argStr.charAt(cldx);

T
return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

Linear Code Sequences and Jumps
● Often, we want to reason about the

subpaths that execution can take.
● A subpath from one branch of control

to another is called a LCSAJ.
● The LCSAJs for this example:

Gregory Gay CSCE 747 - Spring 2017 20

From To Sequence of Basic Blocks

entry j1 b1, b2, b3

entry j2 b1, b2, b3, b4, b5

entry j3 b1, b2, b3, b4, b5, b6, b7

j1 return b8

j2 j3 b7

j3 j2 b3, b4, b5

j3 j3 b3, b4, b5, b6, b7

collapseNewlines(String argSt)

char last =
argStr.charAt(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.le
ngth();

char ch = argStr.charAt(cldx);

T

return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

J1

J2

J3

B1

B2

B3

B4

B5

B6 B7

B8

Activity 1 - Control-Flow Graph
Draw a control-flow graph for the following code:
1. int abs(int A[], int N)
2. {
3. int i=0;
4. while (i< N)
5. {
6. if (A[i]<0)
7. A[i] = - A[i];
8. i++;
9. }
10. return(1);
11.}

Gregory Gay CSCE 747 - Spring 2017 21

Activity 1 - Solution

1. int abs(int A[], int N)
2. {
3. int i=0;
4. while (i< N)
5. {
6. if (A[i]<0)
7. A[i] = - A[i];
8. i++;
9. }
10. return(1);
11.}

Draw a control-flow graph for the following code:

i++

 i<N

A[i]<0

A[i] = - A[i];

return(1)

True
False

True

False

i=0

Gregory Gay CSCE 747 - Spring 2017 22

Call Graphs
Directed graph representing interprocedural control-flow,
where nodes represent procedures and edges represent
“calls” relation.

Gregory Gay CSCE 747 - Spring 2017 23

StringUtils.collapseNewlines(String)

String.charAt(int) StringBuffer.toString()StringBuffer.append(char)String.length()

Polymorphism and Call Graphs

● In OO languages, subclasses inherit a data
type, methods, and variables from a parent

● Subclasses can override behavior of inherited
methods. You cannot be sure which class is
assigned to a variable at runtime.

● In the call graph, you can either model all
subclasses that could be invoked, or just the
declared class.
○ Latter is easier, but risks omitting execution paths.

Gregory Gay CSCE 747 - Spring 2017 24

Call Graphs
public class C{

public static C cFactory(String kind){

if (kind==”C”) return new C();

if (kind==”S”) return new S();

return null;

}

void foo(){

System.out.println(“Hello.”);

}

public static void main(String args[]){

(new A()).check();

}

}

class S extends C{

void foo(){

System.out.println(“World.”);

}

}

Gregory Gay CSCE 747 - Spring 2017 25

A.check()

C.foo() S.foo()C.cFactory(String)

class A{

void check(){

C myC = C.cFactory(“S”);

myC.foo();

}

}

Behavioral Models

Finite State Machines

● A common method of
modeling behavior of a
system.

● A directed graph: nodes
represent states, edges
represent transitions.

● Not a substitute for a
program, but a way to
explore and understand a
program.
○ Can even build a model

for each function.

Gregory Gay CSCE 747 - Spring 2017 27

Some Terminology

● Event - Something that happens at a point in
time.
○ Operator presses a self-test button on the device.
○ The alarm goes off.

● Condition - Describes a property that can
be true or false and has duration.
○ The fuel level is high.
○ The alarm is on.

Gregory Gay CSCE 747 - Spring 2017 28

Some Terminology

● State - An abstract description of the current
value of an entity’s attributes.
○ The controller is in the “self-test” state after the

self-test button has been pressed, and leaves it
when the rest button has been pressed.

○ The tank is in the “too-low” state when the fuel level
is below the set threshold for N seconds.

Gregory Gay CSCE 747 - Spring 2017 29

States, Transitions, and Guards

● States change in response to events.
○ A state change is called a transition.

● When multiple responses to an event
(transitions triggered by that event) are
possible, the choice is guided by the current
conditions.
○ These conditions are also called the guards on a

transition.

Gregory Gay CSCE 747 - Spring 2017 30

State Transitions

Transitions are labeled in the form:
event [guard] / activity

● event: The event that triggered the
transition.

● guard: Conditions that must be true to
choose this transition.

● activity: Behavior exhibited by the object
when this transition is taken.

Gregory Gay CSCE 747 - Spring 2017 31

State Transitions

Transitions are labeled in the form:
event [guard] / activity

● All three are optional.
○ Missing Activity: No output from this transition.
○ Missing Guard: Always take this transition if the

event occurs.
○ Missing Event: Take this transition immediately.

Gregory Gay CSCE 747 - Spring 2017 32

State Transition Examples

Transitions are labeled in the form:
event [guard] / activity

● The controller is in the “self-test” mode after
the test button is pressed, and leaves it
when the rest button is pressed.
○ Pressing self-test button is an event.

● The tank is in the “too-low” state when fuel
level is below the threshold for N seconds.
○ Fuel level below threshold for N seconds is a guard.

Gregory Gay CSCE 747 - Spring 2017 33

Example: Gumball Machine

Waiting for
Quarter

Quarter
Inserted

user inserts quarteruser ejects quarter

Gumball
Sold

user turns crank

Out of
Gumballs

[gumballs > 0]

[gumballs -1 > 0] /
dispense gumball

[gumballs -1 = 0] / dispense
gumball

Gregory Gay CSCE 747 - Spring 2017 34

More on Transitions

Guards must be
mutually exclusive

If an event occurs and
no transition is valid,
then the event is
ignored.

last bill ejected
[balance > 0 &&
balance >= needed]

Able to
Purchase

last bill ejected
[balance = 0]

Waiting for
Money

More Money
Needed

last bill ejected
[balance > 0 &&
balance < needed]

Gregory Gay CSCE 747 - Spring 2017 35

Internal Activities

States can react to
events and conditions
without transitioning
using internal activities.

Special events: entry
and exit.
Other activities occur
until a transition occurs.
Similar to a
self-transition, but
entry and exit will not be
re-triggered without
using an actual
self-transition.

Typing
entry / highlight all
exit / update field
character entered / add to field
help requested [verbose] / open help page
help requested [minimal] / update status bar

Gregory Gay CSCE 747 - Spring 2017 36

Activity - Secret Panel Controller

You must design a state machine for the controller of a
secret panel in Dracula’s castle.

Dracula wants to keep his valuables in a safe that’s hard to
find. So, to reveal the lock to the safe, Dracula must
remove a strategic candle from its holder. This will reveal
the lock only if the door is closed. Once Dracula can see
the lock, he can insert his key to open the safe. For extra
safety, the safe can only be opened if he replaces the
candle first. If someone attempts to open the safe without
replacing the candle, a monster is unleashed.

Gregory Gay CSCE 747 - Spring 2017 37

Activity Solution

Wait

Open

Lock
Revealed

Monster
Unleashed

candle removed [door closed] /
reveal lock

key turned [candle in] /
open safe

safe closed / close
panel

key turned [candle out] /
release monster

Gregory Gay CSCE 747 - Spring 2017 38

What Can We Do With This Model?

Now that we have a model, we can reason
about our requirements and specifications.

Specification

public static void Main(){
System.out.println(“H

ello world!”);
}

If the model satisfies
the specification...

And If the model is
well-formed, consistent,
and complete.

And If the model
accurately represents the
program.

Gregory Gay CSCE 747 - Spring 2017 39

Models require abstraction. Useful for
requirements analysis, but may not reflect
operating conditions.

Challenge - Does the Model Match
the Program?

SimplePacing

sense
Voltage
Sensor

Clock Module

timeIn /
timeOut

Other
Subsystems

In the model:
● Binary input

In the implementation:
● Voltage reading compared

to calculated threshold

In the model:
● input time = output time
● Operations take place

instantly.
In the implementation:
● Operations take time to

compute.
● Clock drift may impact time.

Gregory Gay CSCE 747 - Spring 2017 40

Model Refinement

● Models have to balance precision with efficiency.
● Abstractions that are too simple may introduce spurious

failure paths that may not be in the real system.
● Models that are too complex may render model

checking infeasible due to resource exhaustion.

Gregory Gay CSCE 747 - Spring 2017 41

We Have Learned

● Often, the source code of the software is too
complex to analyze in detail.

● Instead, we must create abstract models of
the facets of a program we want to examine.
○ Models can be based on source code and execution

paths or on specifications of functional behavior.
○ Models can be used to prove that the program obeys

its specifications.

Gregory Gay CSCE 747 - Spring 2017 42

Next Time

● Functional Testing
○ Building tests using the requirement specification.
○ Reading: Chapter 10

● Homework:
○ Team Selections due Thursday (11:59 PM)

■ e-mail me with your team roster (or to get placed)
○ Reading assignment:

■ James Whittaker. The 10-Minute Test Plan.
■ Due January 24 (11:59 PM)

Gregory Gay CSCE 747 - Spring 2017 43

Reading Assignment

● James Whittaker. The 10-Minute Test Plan.
● Individual assignment.
● Read the paper and turn in a one-page write-up:

○ Summary of the paper.
○ Your opinion on the work.

■ Is it applicable to real-world software?
■ Is it a useful approach?
■ Where does it fall short?

○ Your thoughts on how this could be improved and
extended.

Gregory Gay CSCE 747 - Spring 2017 44

