
Data Flow Testing
CSCE 747 - Lecture 10 - 02/20/2018

1

Control Flow

● Capture dependencies
in terms of how control
passes between parts of
a program.

● We care about the effect
of a statement when it
affects the path taken.
○ but deemphasize the

information being
transmitted.

x--;
/* continue */

1<x

T F

2

Data Flow

● Another view - program statements compute
and transform data…
○ So, look at how that data is passed through the

program.
● Reason about data dependence

○ A variable is used here - where does its value come
from?

○ Is this value ever used?
○ Is this variable properly initialized?
○ If the expression assigned to a variable is changed

what else would be affected?

3

Data Flow Analyses

● Used to detect faults and other anomalies.

● Also can be used to derive test cases.
○ Have we covered the data dependencies?

Any-Paths All-Paths

Forward (pred) Reach

U may be preceded by G
without an intervening K

Avail

U is always preceded by G
without an intervening K

Backward (succ) Live

D may lead to G before K

Inevitability

D always leads to G before
K

4

Variable Aliasing

5

Dealing With Arrays/Pointers

● Arrays and pointers (including object
references and arguments) introduce issues.
○ It is not possible to determine whether two access

refer to the same storage location.
■ a[x] = 13;

k = a[y];
● Are these a def-use pair?

■ a[2] = 42;
i = b[2];
● Are these a def-use pair?

○ Aliasing = two names refer to the same memory location.

6

Aliasing

● Aliasing is when two names refer to the
same memory location.
○ int[] a = new int[3];

int[] b = a;
a[2] = 42;
i = b[2];

○ a and b are aliases.
● Worse in C:

p = &b;
*(p + i) = k;

7

Uncertainty

● Dynamic references and aliasing introduce
uncertainty into data flow analysis.
○ Instead of a definition or use of one variable, may

have a potential def or use of a set of variables.
● Proper treatment depends on purpose of

analysis:
○ If we examine variable initialization, might not want

to treat assignment to a potential alias as
initialization.

○ May wish to treat a use of a potential alias of v as a
use of v.

8

Dealing With Uncertainty

● Basic option: Treat all potential aliases as definitions
and uses of the same variable:

● Easiest and cheapest option when performing an
analysis.

● Can be very imprecise.
○ They are only the same if x and y are the same.

a[1] = 13;
k = a[2];

a[x] = 13;
k = a[y];

Def of a[1], use of a[2].

Def and use of array a.

9

Dealing With Uncertainty

● Treat uncertainty about aliases like uncertainty about
control flow.

● In transformed code, all array references are distinct.
○ Any-path analysis - create a def-use pair, but

assignment to a[y] does not erase definition to a[x].
○ Gen sets include everything that might be

references, kill sets only include definite references.

a[x] = 13;
k = a[y];

a[x] = 13;
if(x == y) k = a[x];
else k = a[y];

10

Dealing With Uncertainty

● In transformed code, all array references are distinct.
○ Any-path analysis - create a def-use pair, but

assignment to a[y] does not erase definition to a[x].
○ All-paths analysis - a definition to a[x] makes only

that expression available. Assignment to a[y] kills
a[x].
■ Gen sets should include only what is definitely

referenced and kill sets should include all
possible aliases.

a[x] = 13;
k = a[y];

a[x] = 13;
if(x == y) k = a[x];
else k = a[y];

11

Dealing With Nonlocal Information

● fromCust and toCust
may be references to
the same object.
○ from/toHome and

from/toWork may also
reference the same object.

● Common option - treat
all nonlocal information
as unknown.
○ Treat Customer/PhoneNum

objects as potential aliases.
○ Be careful - may result in

results so imprecise they
are useless.

public void transfer(Customer fromCust,
Customer toCust){

PhoneNum fromHome =
fromCust.getHomePhone();

PhoneNum fromWork =
fromCust.getWorkPhone();

PhoneNum toHome =
toCust.getHomePhone();

PhoneNum toWork =
toCust.getWorkPhone();

}

12

Interprocedural Analysis

13

Interprocedural Analysis - Control
Flow

● First option - include other procedures in a
large CFG…

foo()

A

sub()

B

bar()

C

sub()

D

sub()

X

Y

Problem - infeasible paths!

14

Context-Sensitivity
public class Context{

public static void main(String args[]){

Context c = new Context();

c.foo(3);

c.bar(17);

}

void foo(int n){

int[] a = new int[n];

depends(a,2);

}

void bar(int n){

int[] a = new int[n];

depends(a,16);

}

void depends(int[] a, int n){

a[n] = 42;

}

}

main

C.foo() C.bar()

C.depends()

Context-Insensitive

main

C.foo(3) C.bar(17)

C.depends
(int[3], a, 2)

Context-Sensitive

C.depends
(int[17], a, 16)

15

Context-Sensitive Analysis

● Copy the called procedure for
each point that it is called.

● Problem - the number of
contexts a procedure is called in
is exponentially higher than the
number of procedures.
○ Precise, but expensive

analysis.
● In practice, only feasible for

small groups of related
procedures.

A

B C

D E

F G

H

16

Context-Insensitive Analysis

● Unhandled exception analysis
○ If procedure A calls procedure B that throws an

exception, A must handle or declare that exception.
○ Analysis steps hierarchically through the call graph.

● Two conditions:
○ Information needed to analyze calling procedure

must be small.
○ Information about the called procedure must be

independent of caller (context-insensitive)
● Analysis can start from leaves of call graph

and work upward to the root.
17

Flow-Sensitivity

● Aliasing information
requires context.

● Some analyses can
sacrifice precision
on another aspect:
control-flow
information
○ Call graphs are

flow-insensitive.

main

C.foo(3) C.bar(17)

C.depends
(int[3], a, 2)

C.depends
(int[17], a, 16)

18

Insensitive Pointer Analysis

● Treat each statement as a constraint.
x = y; (where y is a pointer)

● Note that x may refer to any of the same
objects that y refers to.
○ References(x) ⊇References(y) is a constraint

independent of the path taken.
○ Procedure calls are assignments of values to

arguments.
● Results are imprecise, but better than just

assuming that any two pointers might refer
to the same object.

19

Data Flow Testing

20

Overcoming Limitations of
Path Coverage

● We can potentially expose many faults by
targeting particular paths of execution.

● Full path coverage is impossible.
● What are the important paths to cover?

○ Some methods impose heuristic limitations.
■ Loop boundary coverage

○ Can also use data flow information to select a subset
of paths based on how one element can affect the
computation of another.

21

Choosing the Paths

● Branch or MC/DC coverage already cover
many paths. What are the remaining paths
that are important to cover?

● Basis of data flow testing - computing the
wrong value leads to a failure only when that
value is used.
○ Pair definitions with usages.
○ Ensure that definitions are actually used.
○ Select a path where a fault is more likely to

propagate to an observable failure.

22

Review - Def-Use Pairs

● Incorrect computation of x at
either 1 or 4 could be
revealed if used at 6.

● (1,6) and (4,6) are DU pairs
for x.
○ DU Pair = there exists a

definition-clear path between the
definition of x and a use of x.

○ If x is redefined on the path, the
original definition is killed and
replaced.

if ...

...

...

x = ..

x = ...

y = x + ...;

1

4

6

23

Def-Use Pairs

● ++counter, counter++, counter+=1
counter = counter + 1
○ These are equivalent. They are a use of counter, then a new

definition of counter.
● char *ptr = *otherPtr

○ Need a policy for how you deal with aliasing.
○ Ad-hoc option:

■ Definition of string *ptr
■ Use of index ptr, string *otherPtr, and index otherPtr.

● ptr++
○ Use of index ptr, and a definition of both the index and string

*ptr.
○ Change to index moves the pointer to a new location.

24

All DU Pair Coverage

● Requires each DU pair be exercised in at
least one program execution.
○ Erroneous values produced by one statement might

be revealed if used in another statement.

Coverage = number exercised DU pairs
number of DU pairs

● Can easily achieve structural coverage
without covering all DU pairs.

25

All DU Paths Coverage

● One DU pair might belong to many
execution paths. Cover all simple
(non-looping) paths at least once.
○ Can reveal faults where a path is exercised that

should use a certain definition but doesn’t.

Coverage = number of exercised DU paths
number of DU paths

26

Path Explosion Problem

● Even without looping
paths, the number of SU
paths can be
exponential to the size
of the program.

● When code between
definition and use is
irrelevant to that
variable, but contains
many control paths.

void countBits(char ch){

int count = 0;

if (ch & 1) ++count;

if (ch & 2) ++count;

if (ch & 4) ++count;

if (ch & 8) ++count;

if (ch & 16) ++count;

if (ch & 32) ++count;

if (ch & 64) ++count;

if (ch & 128) ++count;

printf(“‘%c’ (0X%02X) has %d bits
set to 1\n”, ch, ch, count);

}

27

All Definitions Coverage

● All DU Pairs/All DU Paths are powerful and
often practical, but may be too expensive in
some situations.

● In those cases, pair each definition with at
least one use.

Coverage = number of covered definitions
number of definitions

28

Dealing With Aliasing

● Requires trade-off between precision and
computational efficiency.

● Underestimate potential aliases
○ Could miss def-use pairs

● Overestimate potential aliases
○ Could have infeasible pairs, leading to unsatisfiable

coverage obligations

● What is a suitable approximation of potential
aliases for testing?

29

Infeasibility Problem

● Metrics may ask for impossible test cases.
● Path-based metrics aggravates the problem

by requiring infeasible combinations of
feasible elements.
○ Alias analysis may add additional infeasible paths.

● All Definitions Coverage and All DU-Pairs
Coverage often reasonable.
○ All DU-Paths is much harder to fulfill.

30

Activity - DU Pairs

● Identify all DU
pairs and write
test cases to
achieve All DU
Pair Coverage.
○ Hint - remember

that there is a loop.

1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

31

Activity - DU Pairs
1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable Defs Uses

x 1, 7 4, 5, 7, 10

y 1, 5 3, 5, 10

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10),
(7, 4), (7, 5), (7, 7), (7, 10)

y (1, 3), (1, 5), (1, 10), (5, 3),
(5, 5), (5, 10)

32

Activity - DU Pairs
1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10),
(7, 4), (7, 5), (7, 7), (7, 10)

y (1, 3), (1, 5), (1, 10), (5, 3),
(5, 5), (5, 10)

Test 1: (x = 1, y = 2)
Covers lines 1, 3, 4, 5, 3, 4, 5, 3, 10

Test 2: (x = -1, y = 1)
Covers lines 1, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 5, 3, 10
Test 3: (x = 1, y = 0)
Covers lines 1, 3, 8

33

We Have Learned

● Arrays, pointers, and complex data
structures introduce uncertainty into
analysis.
○ Requires a policy for how aliasing is handled.
○ Trade-off between computational feasibility and

precision.
● Analyses must handle non-local references.

○ Similar trade-off. Can gain efficiency by sacrificing
flow sensitivity and context sensitivity.

34

We Have Learned

● If there is a fault in a computation, we can
observe it by looking at where the
computation is used.

● By identifying DU pairs and paths, we can
create tests that trigger faults along those
paths.
○ All DU Pairs coverage
○ All DU Paths coverage
○ All Definitions coverage

35

Next Class

● Model-Based Testing

● Reading: Chapter 14
● Homework:

○ Homework 2 is out - Due March 6th
○ Reading Assignment 2 due tonight

36

