
Fault-Based Testing
CSCE 747 - Lecture 12 - 03/01/2018

Space Shuttle Challenger

● January 28, 1986 - seal
failure in a rocket
booster causes the
shuttle to explode, killing
all seven astronauts.

● Three year investigation
found technical and
organizational issues.

● Became a case example
studied in many forms of
engineering.

2

Fault-Based Testing

By studying faults in previous designs, we can
predict and prevent similar faults in future
product designs.

Many testing techniques based on what we
think should happen. We can also test based
on knowledge of what has gone wrong before.

3

Used in Language Design

● Automated Garbage Collection
○ Prevents dangling pointers, memory leaks, other

memory management faults.
● Automatic Array Bounds Checking

○ Does not prevent bad indexes from being used, but
ensures they are noticed and limits damage.

● Type Checking
○ Prevents malformed values from being used as input

or in computations.

4

Fault-Based Testing

● Model the type of faults we expect to see in
a program.
○ Create alternate versions of the program with those

faults.
○ Design tests that distinguish the real program from

the faulty program.
● Process of fault seeding - deliberately

creating programs with faults to see if our
tests can find those intentional faults.

5

Uses of Fault Seeding

● Fault seeding can be used to:
○ Judge the adequacy of a test suite.
○ Select test cases to augment a suite.
○ Estimate the number of faults in a program.

● Provides evidence that we have done a
good job in testing.
○ If our tests have not found any new faults, have they

found all major issues, or are they bad tests?
○ Fault seeding helps answer this question.

■ Can the existing tests find the seeded faults?

6

Mutation Testing

● Encode common
syntactic faults as
mutation operators.
○ Functions that take in

candidate program
statements and insert
the modeled fault.

● Produces a mutant.
○ A clone of the program

with 1+ seeded faults.

SUT

Mutant

Mutation
Operator

if((a == 1) && !b){ ...

if((a == 1) || !b){ ...

7

Mutation Operators

8

Mutation Operators

● Intended to model common types of faults.
● Designed to be applied to any type of code,

without human intervention.
● Tend to be simple syntactic faults.

○ Replacing one variable reference with another.
○ Changing a comparison from < to <=.
○ Referencing a parent class instead of a child.

9

Operand Modifications

● X for Y replacement
○ Replace constant C1 with constant C2.
○ Replace constant C with scalar variable S.
○ Replace scalar S for constant C.
○ Replace scalar S1 with scalar S2.
○ Replace scalar/constant with array reference A[I].
○ Replace array reference A[I] with scalar/constant.
○ Replace array reference with another array

reference.
■ Either another array or another index in the same array.

10

Expression Modifications

● Arithmetic Operators
○ Binary operators: x (+, -, *, /, %) y
○ Unary operators: +x, -x
○ Shortcut operators: x++, ++x, x--, --x

● Arithmetic Operator Replacement
○ Replace binary/unary/shortcut operator with another.
○ Replace shortcut operator with a unary operator.

● Arithmetic Operator Insertion
○ Insert an additional operator into an expression.

● Arithmetic Operator Deletion
○ Remove an operator from an expression.

11

Expression Modifications

● Conditional Operators
○ Binary: x (&&, ||, &, |, ^) y
○ Unary: (~, !)x

● Relational Operators
○ x (>, >=, <, <=, ==, !=) y

● Shift Operators
○ x (>>, <<, >>>>) y

● (Conditional/Relational/Shift) Operator
Replacement, Insertion Deletion

12

Expression Modifications

● Shortcut Operators
○ x (+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=) y
○ Shortcut Operator Replacement

● Absolute Value Insertion
○ Replace a subexpression with abs(e).

● Constant for Predicate Replacement
○ Replace a predicate (a || b) with a constant truth

value (true/false).

13

Statement Modifications

● Statement Deletion
○ Remove a random statement from the program.

● Switch Case Replacement
○ Replace the label of one case with another.

● End Block Shift
○ Move closing brackets to an earlier or later location.

14

Encapsulation/Inheritance
Modifications

● Access Modifier Change
○ Change a modifier to (public/protected/private)

● Hiding Variable Deletion
○ Hiding variable - a variable in a subclass that has the

same name and type as a variable in the parent.
○ Delete a hiding variable.
○ Causes references to that variable to access the

version in the parent instead.
● Hiding Variable Insertion

○ Insert a hiding variable into a subclass.
○ Now, two variables of the same name exist.

15

Inheritance Modifications

● Overriding Method Deletion
○ Delete an overriden method from a subclass.
○ References call the version inherited from a parent.

● Overridden Method Calling Position Change
○ Overridden methods can call the parent method.
○ Moves calls to the parent version to other positions.

● Super Keyword Insertion/Deletion
○ Super keyword is used to access parent variables

and methods within the child.
○ Inserts or deletes the keyword within methods.

16

Inheritance Modifications

● Overridden Method Renamed
○ Rename a method in the parent class that was

overridden by the child.
○ Ensures that the overridden version is always called

instead of the parent version.
● Explicit Parent Constructor Call Deletion

○ Deletes super(parent) constructor calls.
○ To kill, tests must cause and notice an incorrect

initial state.

17

Polymorphism Modifications

● New Method Call with Child Class Type
○ Replace a declaration with a valid child instance.

■ Parent a = new Parent(); becomes Parent a = new Child();

● Variable/Parameter Declaration With Parent
Class Type
○ Change the declared type of a variable to its parent.

■ Child a = new Child(); becomes Parent a = new Child();
■ boolean equals(Child c){..} becomes boolean

equals(Parent c){..}

18

Polymorphism Modifications

● Type Case Operator Insertion/Deletion
○ Change the actual type of an object reference to the parent or

child of the original type.
■ p.toString() becomes ((Child) p).toString()

○ Or delete a type cast operator.
● Cast Type Change

○ ((SomeChild) c).toString() becomes ((OtherChild) c).toString()
● Reference Assignment with Other Compatible Type

○ Change an object reference to point to another compatible
variable.

○ becomesObject obj;
String s = “hello”;
Integer i = new Integer(4);
obj=s;

Object obj;
String s = “hello”;
Integer i = new Integer(4);
obj=i;

19

Polymorphism Modifications

● Overloading allows 2+ methods to have the
same name if they have different signatures.

● Overloading Method Contents Change
○ Replace the body of a method with the body of

another method with the same name.
● Overloading Method Deletion

○ Deletes one of the overloading methods.
● Argument of Overloading Method Change

○ Changes the order or number of arguments in an
invocation, as long as there is a version that will
accept the list.

20

Language-Specific Modifications

● Mutation operators can be written for a
particular language.

● Java:
○ this insertion/deletion
○ Static modifier insertion/deletion
○ Member variable initialization deletion
○ Default constructor deletion
○ Getter/Setter method replacement

21

Mutation Testing

22

Mutation Testing

● Select mutation operators - code
transformations that represent classes of
faults that we are interested in.

● Generate mutants by applying mutation
operators to the program.

● Execute the same tests against the program
and mutants to kill mutants.
○ A mutant is killed if the test passes on the original

program and fails on the mutant.
○ A mutant not killed is considered live.

23

Mutation Testing

● Most mutation operators reflect small
syntactic mistakes.

● Programmers do make such mistakes.
However, many faults are actually
conceptual mistakes.
○ Mistaken assumptions about requirements.
○ Forgotten requirements.

● Is mutation testing a viable technique?

24

Viability of Mutation Testing

● Mutation testing is valid if seeded faults are
representative of real faults.

● Competent Programmer Hypothesis
○ A faulty program differs from a correct program only

by a small textual change.
○ If so, we only have to distinguish the program from

all such small variants.
○ Assumption: the SUT is “close to” correct.

25

Coupling Effect

● Many faults are small syntactical errors.
● Conceptual faults often manifest as

syntactical errors.
● Complex faults may result in larger textual

differences.
○ However, mutation testing is still valid if test cases

for simple issues can detect complex issues.
○ Coupling Effect Hypothesis - complex faults can be

modeled as a set of small faults.

26

Coupling Effect

● A complex change to a program is a series
of small changes.

● If one of these small changes is not masked
by the effects of other changes, then a test
case that can notice that change may also
detect a more complex change.

● Mutation testing is effective if both the
competent programmer hypothesis and
coupling effect hypothesis hold.

27

Mutant Quality

To be used in testing, mutants must be:
● Syntactically correct (valid)

○ Mutants must compile and execute.
● Plausible (useful)

○ Must provide information on how the system works.

Can a mutant be valid, but not useful?

28

Mutant Quality

Mutants might remain live if:
● They are equivalent to the original program.

○ for(i=0; i < 10; i++)
○ for(i=0; i != 10; i++)
○ Identifying equivalency is NP-hard.

● Test suite is inadequate for that mutation.
○ (a <= b) and (a >= b) cannot be differentiated if a==b

in the test case.

29

Mutation Coverage

Adequacy of the suite can be measured as:
 (# mutants killed)

(total mutants)
● Mutants can be equivalent when both the

original and the mutant are wrong.
● Helps ensure that the test suite is robust

against the modeled mutation types.

30

Mutation and Structural Coverage

Mutation coverage can subsume structural
coverage metrics.
● Statement Coverage

○ Apply statement deletion to all statements.
○ To kill a mutant where statement S has been deleted

requires executing S in the original program.
● Branch Coverage

○ Apply constant replacement to all predicates.
○ To kill a mutant where a predicate is set to true, a

test must execute the original with a false value.

31

Practical Considerations

Mutation testing is expensive.
● Must run all tests against all mutants.
● Many mutants typically generated.

○ One mutation operator applied per mutant.

● If cost is an issue, use “weak” mutation
testing:
● Apply multiple mutation operators per mutant.

32

Weak Mutation Testing

Mutation testing is expensive.
● Must run all tests against all mutants.
● Many mutants typically generated.

○ One mutation operator applied per mutant.

● If cost is an issue:
○ “weak” mutation testing - seed multiple faults per

mutants.
○ Sample from space of mutants until statistical

significance is achieved.

33

Weak Mutation Testing

● Seed multiple faults into a single mutant.
○ Called a “meta-mutant”

● Divide the program into segments and track
internal state of both original and all mutants
when executing a segment.

● Kill all detected mutants when intermediate
state differs instead of waiting for output.

● Decreases the number of test executions.

34

Statistical Mutation Testing

● A test suite that kills some mutants may be
as effective at finding real faults as one that
kills all mutants.

● Mutation testing can be used to obtain a
statistical estimate of the ability of the suite
to detect mutations.
○ Randomly generate N mutants.
○ Samples must be a valid statistical model of

occurrence frequencies of real faults.
○ Target 100% coverage over the sample.

35

Estimating Number of Real Faults

● Mutants can be used to estimate the number
of remaining faults in a program.

● Be careful!
○ We must have a reason to believe that our tests are

as effective as real faults as seeded faults.
○ Fault model must reflect the real program.
○ These assumptions are rarely true.

Number of Seeded Faults Seeded Faults Detected
=

 Number of Real Faults Real Faults Detected

36

Activity
1. How many mutations are

possible for Relational
Operator Replacement,
Arithmetic Operator
Replacement

2. Apply relational operator
replacement operation to
statement 4, design a test
that would kill that mutant.

3. Design an equivalent mutant.
4. Design a valid, but useless

mutant.

public int[] makePositive(int[] a){

int threshold = 0;

for(int i=0; i < a.length; i++){

if(a[i] < threshold){

a[i]= -a[i];

}

}

return a;

}

37

Activity - Solution
● How many mutations are possible:

○ Relational Operator Replacement:
■ for(int i=0; i < a.length; i++){

● (>=, <, <=, ==, !=), 5 mutations
■ if(a[i] < threshold){

● (>, >=, <=, ==, !=), 5 mutations
○ Arithmetic Operator Replacement

■ for(int i=0; i < a.length; i++){

● Shortcut replacement, (++i, i--, --i), 3 mutations
■ a[i]= -a[i];

● Unary replacement, (+a[i]), 1 mutation
● Unary to shortcut replacement, (a[i]++, ++a[i], a[i]--,

--a[i]), 4 mutations
38

Activity - Solution
● Apply the relational operator replacement operation to

statement 4:
○ if(a[i] < threshold){ becomes:
○ if(a[i] == threshold){

● Design a test case that would kill that mutant.
○ a[-1,0,1]
○ -1 would not become positive.

39

Activity - Solution
● Design an equivalent mutant.

○ Can do so by applying the relational operator
replacement operation to statement 4:
■ if(a[i] < threshold){ becomes:
■ if(a[i] <= threshold){

○ Since threshold=0, and -0 = 0, no test would detect
this fault.

○ Does not help us test, as the fault cannot cause a
failure.

40

Activity - Solution
● Design a valid, but useless mutant.

○ For example: mutant that compiles, but trivially fails.
○ Apply the relational operator replacement operation

to statement 4:
■ if(a[i] < threshold){ becomes:
■ if(a[i] > threshold){
■ Any positive numbers are made negative, all negative

remain negative. Almost any test would detect this.
○ Many mutants are useless for detecting real faults.

41

We Have Learned

● Mutation testing is the process of inserting
faults to help develop a test suite that can
detect unknown real faults.

● Mutation operators automatically create
faulty versions of a program.
○ Operators model expected fault types.

● Tests are judged according to their ability to
detect faults.

42

Next Time

● Midterm Review
○ Practice Midterm on Dropbox site. Try it out!
○ Answers will be revealed after the review

● Homework:
○ Homework 2 - questions?

43

