
Testing 
Object-Oriented 
Systems
CSCE 747 - Lecture 16 - 03/22/2018



Object-Oriented Software

● Most software is designed as a collection of 
interacting objects that model concepts in 
the problem domain.
○ Concrete concepts in the real world

■ A driver’s license, an aircraft, a document…
○ Logical concepts

■ A scheduling policy, conflict resolution rules...

2



Object-Oriented Software

● What defines an object:
○ Data representation

■ Characteristics that define an object (attributes).
○ Functionality

■ What the object can do (operations).

3



Classes

● A class describes a type of object where each 
instance has the same attributes and behaviors, the 
same relationships to other classes, and common 
meaning.

● Objects are instances of classes, where each 
object has the same structure and behavior.

● Person instances:
○ Greg Gay, Jason Biatek

● Credit Card instances:
○ Greg’s credit card, Jason’s credit card

4



Testing Object-Oriented Software

● Most of the techniques we have covered 
have been introduced using non-OO 
examples (a single procedure, multiple 
procedures within one class).

● These techniques work on OO systems…
○ But, there are a few complications.
○ Today - we will discuss these complications and 

factors that must be considered in testing OO code.

5



Issues With Testing OO Systems

6



OO Testing Issues

● State Dependent Behavior
● Encapsulation
● Inheritance
● Polymorphism and Dynamic Binding
● Abstract Classes
● Exception Handling
● Concurrency

7



State Dependent Behavior

● Object behavior is stateful.
○ An object stores data and operates using that data.
○ The result of a method call depends on the state of 

the object - the values of its attributes.
● We cannot test a method in isolation.

○ Unit tests for classes in OO systems must put the 
object in the correct state by setting attributes and 
calling a sequence of methods.

8



State-Dependent Behavior

● The contents of the slots 
determine the legality of 
the model configuration.

● Are all components 
bound to compatible 
slots?

● Result of 
checkConfiguration() 
depends on the object 
state.

public class Model extends Orders.CompositeItem{

public String modelID;

private int baseWeight;

private int heightCm, widthCM, depthCM;

private Slot[] slots;

private boolean legalConfig = false;

private static final String NoModel = “NO 
MODEL SELECTED”;

private void checkConfiguration(){

legalConfig = true;

for(int i=0; i< slots.length; ++i){

Slot slot = slots[i]

if(slot.required && 
! slot.isBound()){

legalConfig= false;

}

}

}

}

9



Encapsulation
● Classes may have public and 

private members.
● Other objects must work with 

public methods and variables.
● To run a test, we may not be 

able to put an object in 
particular states.

● To check test results, we may 
need access to private 
information.

public class Model extends Orders.CompositeItem{

public String modelID;

private int baseWeight;

private int heightCm, widthCM, depthCM;

private Slot[] slots;

private boolean legalConfig = false;

private static final String NoModel = “NO 
MODEL SELECTED”;

private void checkConfiguration(){

...

}

public boolean isLegalConfiguration(){

if(!legalConfig){

this.checkConfiguration();

}

return legalConfig;

}

}
10



Inheritance

● Child classes inherit attributes 
and operations from their 
parents.
○ Allows the creation of 

specialized versions of 
classes without 
reimplementing functionality.

○ All child objects are 
instances of that class and 
the parent class.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

11



Inheritance

● Inherited methods may not 
exhibit the same behavior in 
children as they do in parent:
○ Child may override the method 

with its own implementation.
○ A method may depend on other 

parts of the class that have 
changed.

○ Can often establish that the 
method is truly unchanged and 
does not need to be retested.

○ If is has changed, it must be 
retested in the right context.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

12



Polymorphism and Dynamic Binding

● The same operation may 
behave differently when used 
on different classes.
○ Specifically, we can redefine 

operations in each related 
class.

● Because Shape defines an 
area() method, we know all 
children offer that method. 
○ But, we can redefine that 

method in each child to offer 
the right answer.

Shape

area()

Square

area()

Circle

area()

Triangle

area()

Because objects are instances 
of both their class and their 
parent class:

void getArea(Shape s){
System.out.println(s.area());

}
Gives the right answer if a 
square, circle, triangle, etc is 
passed in.

13



Polymorphism and Dynamic Binding

● Behavior depends on the 
object assigned at runtime. 
○ If LineItem.getUnitPrice() is 

called, it may actually be 
SimpleItem.getUnitPrice().

○ Wrong object might be bound to 
the variable.

○ May be difficult to tell which 
class has the fault.

○ Fault may be a result of a 
combination of bindings.

● Testing one possible binding 
is not enough - must try 
multiple bindings.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

14



Abstract Classes

● Classes that are incomplete 
and cannot be instantiated.
○ LineItem

● Define templates for other 
classes to follow.

● These still must be tested in 
some form.
○ Can test all of the child 

classes.
○ Techniques for testing 

what is declared in the 
abstract class.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

15



Exceptions

● Used to handle 
erroneous execution 
conditions.

● Either handled directly in 
code, or declared in 
method header.

● Where an exception is 
caught and where it is 
handled differ. 
○ Impacts the 

control-flow of the 
code.

try{

BufferedReader br = new 
BufferedReader(
new File(“input.txt”));

String line = br.readLine();

catch(IOException e){

e.printStackTrace();

}

public int tryThis() 

throws NullPointerException{

...

}

16



Concurrency

● A program can be designed to execute over 
multiple, concurrently-executing processes.

● Introduces new sources of failure:
○ Deadlock, race conditions, timing of data 

synchronization.
● System is dependent on scheduler decisions 

that a tester cannot control.

17



Approaches to Testing
OO Systems

18



The V-Model of Development

Requirement
s Elicitation

System 
Specification

Architectural 
Design

Detailed 
Design

Unit 
Development 
and Testing

Subsystem 
Integration 

Testing

System 
Integration 

Testing

Acceptance 
Testing

Operation 
and 

Maintenance

Acceptance 
Test Plan

System 
Integration 
Test Plan

Subsystem 
Integration 
Test Plan

Unit Test 
Plan

Intraclass Testing:
Testing one class in 
isolation.

Interclass Testing:
Testing groups of 
classes.

19



Unit Testing

● Unit testing is the process of testing the 
smallest isolated “unit” that can be tested.
○ Allows testing to begin as code is written.
○ Allows testing of system components in isolation 

from other components.
● Before the system is built, each component 

should work in isolation.
● Usually in OO, a unit is a class.

○ Individual methods depend on and modify object 
state and are dependent on other methods.

20



Intraclass Testing

To test a class in isolation, we:
1. If the class is abstract, derive a set of 

instantiations to cover significant cases.
2. Design test cases to check correct 

invocation of inherited and overridden 
methods.

3. Design a set of test cases based on the 
states that the class can be put into.
● Build a state machine model based on the class.

21



Intraclass Testing

4. Derive structural information from the source 
code (control and data-flow) and cover the 
code structure of the class.

5. Design test cases for exception handling.
a. Exercising exceptions that should be thrown by 

methods in the class and exceptions that should be 
caught and handled by them.

6. Design test cases for polymorphic calls.
a. Calls to superclass or interface methods that can be 

bound to different subclass objects.

22



Using State Machine Models

● The state of an object implicitly impacts the 
result of a method call.
○ Unit tests should attempt to cover the states of an 

object and transitions between those states.
○ Each unit test: 

■ Consists of a series of method calls.
■ Should ensure that methods return the right 

result.
■ Should ensure that class-level attributes are set 

correctly (Is the class in the desired state?)

23



Using State Machine Models

● We can identify method call sequences by 
covering a state machine model.
○ Map how method calls and attribute assignment can 

force the object into different states.
○ Sequence of transitions ~ sequence of method calls
○ Exercising that sequence should put the class into 

the the desired state. 
■ (and cover different means of reaching those 

states)

24



Informal Specification
Slot represents a configuration choice in all instances of a particular model of 
computer. It may or may not be implemented as a physical slot on a bus. A 
given model may have zero or more slots, each of which is marked as required 
or optional. If a slot is marked as required, it must be bound to a suitable 
component in all legal configurations.

Slot offers the following services:
● Incorporate: Make a slot part of a model, and mark it as either required or 

optional. All instances of a model incorporate the same slots.
● Bind: Associate a compatible component with a slot. 
● Unbind: The unbind operation breaks the binding of a component to a slot, 

reversing the effect of a previous bind operation.
● IsBound: Returns true if a component is currently bound to a slot, or false 

if the slot is currently empty.

25



… To State Machine

● Do not derive too many states.
○ Map to abstract values like “zero” and “nonzero”, not 

a state for each possible value.
● Model how a method affects a class. States 

only need to capture interactions between 
methods and the class state.

Not Present Unbound Bound
incorporate

bind

unbind

unbind

isBound

isBound

26



Test Coverage

● Tests should cover all possible transitions.
○ Do not do this in one test. 
○ Split into smaller, targeted paths.

■ TC1: incorporate, isBound, bind, isBound
■ TC2: incorporate, unBind, bind, unBind, isBound

Not Present Unbound Bound
incorporate

bind

unbind

unbind

isBound

isBound

27



Example - Model
Model represents the current configuration of a particular model of computer. A given 
model may have zero or more slots, each of which is marked as required or optional. 
Each slot may contain a single component. To be a legal model, the model ID must exist 
in the ModelDB, each slot marked as required must be filled, the configuration must 
match that of the ModelDB entry for the model ID, and the optional components must 
match those allowed for that model in the ModelDB. 

● selectModel(modelId): Sets the model ID to the value passed in, as long as the 
model ID is set to “no model selected”. A model ID must be set before any other 
services are requested. 

● deselectModel(): Sets the model ID to “no model selected”. If the configuration was 
previously judged to be legal, it is no longer legal. 

● addComponent(slot, component): Adds the selected component to the selected 
slot. If the configuration was previously judged to be legal, it is no longer legal. 

● removeComponent(slot): Removes the selected component to the selected slot. If 
the configuration was previously judged to be legal, it is no longer legal. 

● isLegalConfiguration(): Compares the current configuration to the entry in 
ModelDB. If the configuration is valid, the Model’s isLegal field is set to “true”. 

28



Choosing States

● What does the class represent?
○ In this case: a computer model.

● What causes method results to differ?
○ Whether the model is legal or illegal.

● Can the class be in any other states?
○ We may not have set the model yet. We could still 

be making decisions and have not determined 
legality.

29

No Model 
Selected Configuring Legal 

Configuration



Choosing Transitions and Initial State

No Model 
Selected

Configuring

Legal 
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component()

remove
Component()

isLegalConfiguration() 
[legalConfig=true]

isLegalConfiguration() 
[legalConfig=false]

30



Choosing Test Cases
No Model 
Selected

Configuring

Valid 
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component()

remove
Component()

isLegalConfi
guration() 
[legalConfig
=true]

isLegalConfi
guration() 
[legalConfig
=false]TC1:

selectModel(M1)
[M1, 1 slots = C1]
deselectModel()
selectModel(M1)
addComponent(S1,C1)
isLegalConfiguration() //true
deselectModel()

TC2:
selectModel(M1)
[M1, 1 slot = C1]
addComponent(S1,C1)
isLegalConfiguration() //true
addComponent(S2,C2)
isLegalConfiguration() // false
removeComponent(S2)
isLegalConfiguration() // true
removeComponent(S1)

31



An Important Reminder

● Do not do this for all classes in your system.
○ State does not always have a significant impact.
○ Some classes are simple enough to cover through 

basic functional testing
○ Building state machines requires a lot of work.
○ Many real world systems have too many classes.

■ Facebook’s iOS app - 18000 classes.
● Look for classes where state clearly matters. 

Model and cover those classes.

32



Interclass Testing

● Most software works by combining multiple, 
interacting components. 
○ In addition to testing components independently, we 

must test their integration.
● When should we test a particular class that 

depends on other classes?
○ Identify a hierarchy of classes based on 

dependencies. 
○ Start from the bottom-up, or mock classes and work 

from the top-down.

33



Dependency

● As the point of interclass testing is to verify 
interactions, we need to understand how 
classes make use of each other.

● Class A depends on B if the functionality of 
B must be present for the functionality of A 
to be provided.
○ Model the use/include relation between classes.
○ If objects of class A contain references to objects of 

class B, A and B have a use/include relation.
○ Ignores inheritance and abstract classes.

34



Deriving the Use/Include Hierarchy
Account

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

1 0..*

*
*

Order

LineItem

CompositeItem SimpleItem

Model PriceList Component

Slot

ModelDB SlotDB ComponentDB

CSVDB

1 *

1
*

*
* *

*

*
11 0..1*

1
1 1*

*

35



Deriving the Use/Include Hierarchy

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

36



Incremental Testing

Test pieces of the system as they 
are completed. Use scaffolding 
(stubs, drivers) to test classes in 
isolation, then swap out for real 
components to test integration.

Advantages:
● Easily test components in isolation.
● Discover faults earlier.

Disadvantage:
● Expensive to develop scaffolding.

37

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB



Bottom-Up Testing

● Start testing from the 
bottom-up. 
○ Start from classes with 

no dependency, then 
move up in the 
hierarchy.

○ Integrate SlotDB with 
Slot, Component with 
ComponentDB.

○ Then ModelDB with 
Model and Slot.

○ … up to Order with all 
below.

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

38



Bottom-Up Testing

● Start with the lower levels of a system and 
work your way upwards.

● Appropriate for object-oriented systems.
● Necessary for testing critical infrastructure.
● Very good at testing individual components.

○ But, does not find major design problems.
○ Top-Down Testing aids in finding 

integration issues.

39



Top-Down Testing

Level 1

Level 2 Stubs
Level 2 Level 2 Level 2

Level 3 Stubs

Level1

Testing Sequence

40



Top-Down Testing

● Start with the high levels of system hierarchy 
and work your way downwards.
○ Lower levels are replaced with mock objects.

● Very good for finding architectural or 
integration errors.

● May need system infrastructure in place 
before testing is possible.

● Requires large effort in developing stubs.

41



Interclass Testing

1. Identify a hierarchy of classes to be tested 
incrementally.

2. Design a set of interclass test cases for the 
cluster-under test.

3. Add test cases to cover data flow between 
method calls.

4. Integrate the intraclass exception-handling tests 
with interclass exception-handling tests.

5. Integrate polymorphism test suite with tests that 
check for interclass interactions.

42



Choosing Interactions

● We would like to cover all possible 
interactions between classes.
○ All possible states of each and all ways they can 

interact.
○ This is clearly not possible.

● Need to choose significant scenarios.
○ May be captured already in UML sequence 

diagrams.
■ Describe object interactions in service of a goal.

○ Vary these scenarios to capture additional illegal 
interaction sequences.

43



Sequence Diagram

ord1: Order line: OrderLine

priceLine()

price

calculatePrice

item: Product user: Customer

getPrice(quantity)

price

getDiscountedValue(ord1)

discounted total

getCurrentTotal

current total

44



We Have Learned

● Testing of OO systems is impacted by
○ State Dependent Behavior
○ Encapsulation
○ Inheritance
○ Polymorphism and Dynamic Binding
○ Abstract Classes
○ Exception Handling
○ Concurrency

● To test such systems, we must test both 
individual classes and groups of related 
classes.

45



We Have Learned

● As classes are impacted by state, we can 
test them effectively by building state 
machines and deriving transition-covering 
tests.
○ A path is a set of method calls on that class.

● Groups of classes should be arranged by 
their dependence relationships, then tested 
from the bottom-up and top-down. 

46



Next Time

● More OO Testing
○ Structural Testing
○ Exceptions
○ Polymorphism
○ Oracles and Encapsulation

● Homework:
○ Assignment 3 - due April 3rd!

47


