
Model-Based Testing
CSCE 747 - Lecture 18 - 03/29/2018

Creating Requirements-Based Tests

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable
requirements.

Figure out what functions can be
tested in (relative) isolation.

What are the outcomes of the
feature, and which input classes

will trigger them?

Identify abstract classes
of test cases.

Instantiate concrete
input/output pairs.

2

Creating Requirements-Based Tests

● This process is effective for identifying the
independent partitions for each input.
○ Leaving us with a large number of test specifications

● Humans must still identify constraints on
combinations of input choices and identify a
subset of important test specifications.

● An alternative approach - build a model from
the specification, and derive tests from the
structure of the model.

3

Models

● A model is an abstraction of the system
being developed.
○ By abstracting away unnecessary details, extremely

powerful analyses can be performed.
● Can be extracted from specifications and

design plans
○ Illustrate the intended behavior of the system.
○ Often take the form of state machines.

■ Events cause the system to react, changing its
internal state.

4

What Can We Do With This Model?

… Then we can derive test cases from the model that can
be applied to the program. If the model and program do not
agree, then there is a fault.

Specification

public static void Main(){
System.out.println(“Hell

o world!”);
}

If the model satisfies
the specification...

And If the model is
well-formed, consistent,
and complete.

And If the model accurately
represents the program.

5

Model-Based Testing

● Models describe the structure of the input
space.
○ They identify what will happen when types of input

are applied to the system.
● That structure can be exploited:

○ Identify input partitions.
○ Identify constraints on inputs.
○ Identify significant input combinations.

● Can derive and satisfy coverage metrics for
certain types of models.

6

Finite State Machines

7

Finite State Machines

● A directed graph.
● Nodes represent states

○ An abstract description of the
current value of an entity’s
attributes.

● Edges represent transitions
between states.
○ Events cause the state to

change.
○ Labeled event [guard] / activity

■ event: The event that triggered the transition.
■ guard: Conditions that must be true to choose a transition.
■ activity: Behavior exhibited by the object when this

transition is taken.

8

Example: Gumball Machine

Waiting for
Quarter

Quarter
Inserted

user inserts quarteruser ejects quarter

Gumball
Sold

user turns crank

Out of
Gumballs

[gumballs > 0]

[gumballs -1 > 0]
/ dispense
gumball

[gumballs -1 = 0] / dispense
gumball

9

Example: Maintenance
If the product is covered by warranty or maintenance contract, maintenance
can be requested through the web site or by bringing the item to a designated
maintenance station.
If the maintenance is requested by web and the customer is a US resident, the
item is picked up from the customer. Otherwise, the customer will ship the item.
If the product is not covered by warranty or the warranty number is not valid,
the item must be brought to a maintenance station. The station informs the
customer of the estimated cost. Maintenance starts when the customer accepts
the estimate. If the customer does not accept, the item is returned.
If the maintenance station cannot solve the problem, the product is sent to the
regional headquarters (if in the US) or the main headquarters (otherwise). If the
regional headquarters cannot solve the problem, the product is sent to main
headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

No Maintenance

Waiting for Pick Up Request - No Warranty

Wait for Acceptance
Wait for ReturningRepair at Station

Repair at Regional HQ Repair at Main HQ

Wait for Component

Repaired
10

Example: Maintenance

11

Finite State Space

● Most systems have an infinite number of
states.
○ For a communication protocol, there are an infinite

number of possible messages that can be passed.
● To model such systems, non-finite

components must be ignored or abstracted
until the model is finite.
○ For the communication protocol, the message text

doesn’t matter. How it is used does matter.
○ Requires an abstraction function to map back to the

real system.
12

State Coverage

● Each state has been reached by one or
more test cases.

● Analog to statement coverage - unless the
model has been placed in each state, all
faults cannot be revealed.

● Easy to understand and obtain, but low
fault-revealing power.
○ The software takes action during the transitions, and

most states can be reached through multiple
transitions.

13

Transition Coverage

● A transition specifies a pre/post-condition.
○ “If the system is in state S and sees event I, then

after reacting to it, the system will be in state T.”
○ A faulty system could violate any of these

precondition, postcondition pairs.
● Coverage requires that every transition be

covered by one or more test cases.
○ Subsumes state coverage.

14

Example: Maintenance
● Test cases often given

as a list of states or
transitions to be
covered.

● No “final” states, could
achieve transition
coverage with one large
test case.
○ Smarter to break

down FSM and
target sections in
isolation.

Example Suite:
T1: 0-2-4-1-0
T2: 0-5-2-4-5-6-0
T3: 0-3-5-9-6-0
T4: 0-3-5-7-5-8-7-8-9-7-9-6-0
T5: 0-5-8-6-0

15

History Sensitivity

● Transition coverage based on assumption
that transitions out of a state are
independent of transitions into a state.

● Many machines exhibit “history sensitivity”.
○ Transitions available depend on the history of

previous actions.
○ AKA - the path to the current state.
○ Can be a sign of a bad model design.

■ “wait for component” in example.
○ Path-based metrics can cope with sensitivity.

16

Path Coverage Metrics

● Single State Path Coverage
○ Requires that each subpath that traverses states at

most once to be included in a path that is exercised.
● Single Transition Path Coverage

○ Requires that each subpath that traverses a
transition at most once to be included in a path that
is exercised.

● Boundary Interior Loop Coverage
○ Each distinct loop must be exercised minimum, an

intermediate, and a large number of times.

17

Single State/Transition Path
Coverage

Single State/Transition
Path Coverage
● Requires that

each subpath
that traverses
states/transitions at
most once to be
included in a path
that is exercised.

18

Boundary Interior Loop Coverage

Boundary Interior
Loop Coverage
● Each distinct

loop must be
exercised minimum,
an intermediate, and
a large number of
times.

19

Test Generation

● Test cases created for models can be
applied to programs.
○ Events can be translated into method input.
○ System output, when abstracted, should match

model output.
● Model coverage is one form of requirements

coverage. Tests should be effective for
verification.

20

Activity

For this model, derive test
suites that achieve state and
transition coverage.

21

Activity - State Coverage

[true,1], [false,2], [false, 65]

22

Activity - Transition Coverage

1. [true,1], [false,2], [false, 65], [true, 66], [false, 77],
[true, 78], [false, 79], [false, 140], [false, 141]

2. [false, 1]

23

Decision Structures

24

Logic Terminology

● A predicate is a function with a boolean
outcome (true/false).
○ When the inputs of the function are clear, they are

left implicit.
■ We don’t care how accounts are represented.

There is just a predicate “educational-customer”.
● A condition is a predicate that cannot be

decomposed further.
● A decision, is 2+ conditions, connected with

operators (and, or, xor, implication).

25

Decision Structures

● Specifications are often expressed as
decision structures.
○ Conditions on input values, and the corresponding

actions or results.
○ Example:

■ NoDiscount = (indAcct ^ !(current > indThreshold) ^
!(offerPrice < indNormalPrice))
v (busAcct ^ !(current > busThreshold) ^
!(current > busYearlyThreshold) ^

 !(offerPrice < busNormalPrice))

● Decision structures can be modeled as
tables, relating predicate values to outputs.

26

Decision Tables

● Decision structures can be modeled as
tables, relating predicate values to outputs.

● Rows represent basic conditions.
● Columns represent combinations of

conditions, with the last row indicating the
expected output for that combination.

● Cells are labeled T, F, or - (don’t care).
● Column is equivalent to a logical expression

joining the required values.

27

Decision Tables

● Can be augmented with a
set of constraints that limit
combinations.
○ Formalize the relations

among basic conditions
○ Expressions over

predicates:
■ (Cond1 ^ !Cond2 => Cond3)

○ Short-hand for common
combinations:
■ at-most-one(C1...Cn)
■ exactly-one(C1...Cn)

Cond1 T F

Cond2 F -

Cond3 T T

Out T F

28

Example Decision Table

EduAc T T F F F F F F

BusAc - - F F F F F F

CP > CT1 - - F F T T - -

YP > YT1 - - - - - - - -

CP > Ct2 - - - - F F T T

YP > YT2 - - - - - - - -

SP > Sc F T F T - - - -

SP > T1 - - - - F T - -

SP > T2 - - - - - - F T

Out Edu SP ND SP T1 SP T2 SP

Constraints
at-most-one(EduAc,BusAc)
at-most-one(YP<=YT1, YP > YT2)
at-most-one(CP<=CT1, CP > CT2)
at-most-one(SP<=T1, SP > T2)
YP > YT2 => YP > YT1
CP > CT2 => CP > CT1
SP > T2 => SP > T1

Abbreviations
CP = current purchase
YP = yearly purchase
C(Y)T = current/yearly threshold
SP = special price
Sc = scheduled price
T1 = tier 1
T2 = tier 2
Edu = educational discount
NP = no discount

29

Decision Table Coverage

● Basic Condition Coverage
○ Translate each column into a test case.
○ Don’t care entries can be filled out arbitrarily, as long

as constraints are not violated.
● Compound Condition Coverage

○ All combinations of truth values for predicates must
be covered by test cases.

○ Requires 2n test cases for n predicates.
■ Can only be applied to small sets of predicates.

30

Example - Basic Condition Coverage

EduAc T T F F F F F F

BusAc - - F F F F F F

CP > CT1 - - F F T T - -

YP > YT1 - - - - - - - -

CP > Ct2 - - - - F F T T

YP > YT2 - - - - - - - -

SP > Sc F T F T - - - -

SP > T1 - - - - F T - -

SP > T2 - - - - - - F T

Out Edu SP ND SP T1 SP T2 SP

Constraints
at-most-one(EduAc,BusAc)
at-most-one(YP<=YT1, YP > YT2)
at-most-one(CP<=CT1, CP > CT2)
at-most-one(SP<=T1, SP > T2)
YP > YT2 => YP > YT1
CP > CT2 => CP > CT1
SP > T2 => SP > T1

Test 1: (T,-,-,-,-,-,F,-,-)

Test 2: (T,-,-,-,-,-,T,-,-)

Test 3: (F,F,F,-,-,-,F,-,-)

?

Test 3: (F,F,F,-,F,-,F,-,-)

31

Example - Compound Condition
Coverage

EduAc T T

BusAc F T

CP > CT1 F F

YP > YT1 F F

CP > Ct2 F F

YP > YT2 F F

SP > Sc F F

SP > T1 F F

SP > T2 F F

Constraints
at-most-one(EduAc,BusAc)
at-most-one(YP<=YT1, YP > YT2)
at-most-one(CP<=CT1, CP > CT2)
at-most-one(SP<=T1, SP > T2)
YP > YT2 => YP > YT1
CP > CT2 => CP > CT1
SP > T2 => SP > T1

… etc
(29 combinations)

EduAc T T

BusAc F T

CP > CT1 F F

YP > YT1 F F

CP > Ct2 F F

YP > YT2 F F

SP > Sc F F

SP > T1 F F

SP > T2 F F

Removes 128 combinations
Removes 96 more combinations
Removes 64 more combinations

32

Decision Table Coverage

● Modified Decision/Condition Coverage
(MC/DC)
○ Each column represents a test case.
○ In addition, new columns are generated by modifying

the cells containing T and F.
○ If changing a value results in a test case consistent

with an existing column, the two are merged back
into one.

○ A test suite should not just test positive combinations
of values, but also negative combinations.

33

Example Decision Table

EduAc T T F F F F F F

BusAc - - F F F F F F

CP > CT1 - - F F T T - -

YP > YT1 - - - - - - - -

CP > Ct2 - - - - F F T T

YP > YT2 - - - - - - - -

SP > Sc F T F T - - - -

SP > T1 - - - - F T - -

SP > T2 - - - - - - F T

Out Edu SP ND SP T1 SP T2 SP

EduAc T F T T F F F F F F

BusAc - - - - F F F F F F

CP > CT1 - - - - F F T T - -

YP > YT1 - - - - - - - - - -

CP > Ct2 - - - - - - F F T T

YP > YT2 - - - - - - - - - -

SP > Sc F F T T F T - - - -

SP > T1 - - - - - - F T - -

SP > T2 - - - - - - - - F T

Out Edu ND SP SP ND SP T1 SP T2 SP

EduAc T T F T F F F F F F

BusAc - - - - F F F F F F

CP > CT1 - - - - F F T T - -

YP > YT1 - - - - - - - - - -

CP > Ct2 - - - - - - F F T T

YP > YT2 - - - - - - - - - -

SP > Sc F T T F F T - - - -

SP > T1 - - - - - - F T - -

SP > T2 - - - - - - - - F T

Out Edu SP SP Edu ND SP T1 SP T2 SP

EduAc T T F T F F F F F F F F

BusAc - - F F T F F F F F F F

CP > CT1 - - F F F T F F T T - -

YP > YT1 - - - - - - - - - - - -

CP > Ct2 - - - - - - - - F F T T

YP > YT2 - - - - - - - - - - - -

SP > Sc F T F F F F T T - - - -

SP > T1 - - - - - - - - F T - -

SP > T2 - - - - - - - - - - F T

Out Edu SP ND Edu ND T2 SP SP T1 SP T2 SP

34

Activity

● Airline Ticket Discount Function
○ Read the specification and draw a decision table.
○ How many tests would be required for compound

condition coverage?
○ Expand the table to form a MC/DC test suite. How

many tests were added?

35

Activity - Decision Table

Infant T T F F F F

Child F F T T F F

Domestic T F - - - F

International F T - - - T

Early - - T - T -

Off-Season - - - - - T

Discount 80 70 20 10 10 15

Constraints:
● Infant => !Child
● Child => !Infant
● Domestic => !International
● International => !Domestic
● Domestic xor International

36

Activity - Decision Table

Infant T F T T T T F F F F

Child F F T F F F T T F F

Domestic T T T F T F - - - F

International F F F F T T - - - T

Early - - - - - - T - T -

Off-Season - - - - - - - - - T

Discount 80 0 70 20 10 10 15

Constraints:
● Infant => !Child
● Child => !Infant
● Domestic => !International
● International => !Domestic
● (Domestic xor International)

Infant T F T F T T T T F F F F

Child F F F F T F F F T T F F

Domestic T T F F F T F F - - - F

International F F T F F F F T - - - T

Early - - - - - - - - T - T -

Off-Season - - - - - - - - - - - T

Discount 80 0 70 70 20 10 10 15

Infant T F T F T F F F F -

Child F F F T F F T T F -

Domestic T T F - - - - - - -

International F F T - - - - - - T

Early - - - T T T F - T -

Off-Season - - - - - - - - - T

Discount 80 0 70 20 10 10 15

Infant T F T F T F F T F F F

Child F F F T F T T T F F F

Domestic T T F - - - - - - - F

International F F T - - - - - - - T

Early - - - T T F - - - T -

Off-Season - - - - - - - - - - T

Discount 80 0 70 20 10 10 15

Infant T F T F T F F F T F F F

Child F F F T F T T F F T F F

Domestic T T F - - - - - - - - F

International F F T - - - - - - - - T

Early - - - T T F - T T T F -

Off-Season - - - - - - - - - - - T

Discount 80 0 70 20 10 10 15

Infant T F T F T F F F F F T F F F F

Child F F F T F T T F F F F T F F F

Domestic T T F - - - - - - F F F T F F

International F F T - - - - - - T T T T F T

Early - - - T T F - T F - - - - - -

Off-Season - - - - - - - - - T T T T T F

Discount 80 0 70 20 10 10 15

Infant T F T F T F F F F F T F F

Child F F F T F T T F F F F T F

Domestic T T F - - - - - - F F F F

International F F T - - - - - - T T T T

Early - - - T T F - T F - - - -

Off-Season - - - - - - - - - T T T F

Discount 80 0 70 20 ?? 10 10 10 0 15 70 15 0

Infant T F T F T F F F F F T F F

Child F F F T F T T F F F F T F

Domestic T T F - - - - - - F F F F

International F F T - - - - - - T T T T

Early - - - T T F - T F - - - -

Off-Season - - - - - - - - - T T T F

Discount 80 0 70 20 ?? 10 10 10 0 15 70 15 0

Infant T F F F F F T F F

Child F F T T F F F T F

Domestic T T - - - F F F F

International F F - - - T T T T

Early - - T F T - - - -

Off-Season - - - - - T T T F

Discount 80 0 20 10 10 15 70 15 0

37

Grammars

38

Grammars

● Specifications for complex documents or
domain-specific languages are often
structured as grammars.

<search> ::== <search> <binop> <term> | not <search> | <term>
<binop> ::== and | or
<term> ::== <regexp> | (<search>)
<regexp> :== Char<regexp> | Char | {<choices>} | *
<choices> ::== <regexp> | <regexp>,<choices>

● Tests can be derived from these structures.

39

Grammar-Based Input

● Grammars are useful for representing
complex input of varying and unbounded
size, with recursive structures and boundary
conditions.
○ Example, XML files.

■ Document built from a set of standard tags.
■ There are rules on how those tags are formatted.
■ However, some tags may appear multiple times,

are optional, or may appear in different orders.
○ Can use the grammar to derive input for a function.

40

Generating Input

● A test case is a string generated from that
grammar, then fed to the function.

● A production is a grammar element:
○ <binop> ::== and | or
○ <binop> is a non-terminal symbol (it can be broken down further)
○ “and” is a terminal symbol (it can’t be broken down further)

● Start from a non-terminal symbol and apply
productions to substitute substrings from
non-terminals in the current string until we
get a string entirely made of terminals.

41

Generating Input

● At each step, we must choose productions to
apply to the string.
○ Generation is guided by coverage criteria, defined as

coverage over the grammar rather than coverage
over the program.

● Production Coverage - Each production
must be exercised at least once by a test
case.
○ Requires a strategy for how productions are

selected.

42

Selecting Productions

● Test and suite size can
be tuned based on the
strategy.
○ Favor productions with

more terminals.
■ Large number of

tests, each test will
be small.

○ Favor productions with
more non-terminals.
■ Small number of

tests, where each
test is larger.

<search> ::== <search> <binop> <term>
| not <search> | <term>

<binop> ::== and | or
<term> ::== <regexp> | (<search>)
<regexp> :== Char<regexp> | Char

| {<choices>} | *
<choices> ::== <regexp> |

<regexp>,<choices>

43

Production Coverage Example

“not Char {*,Char} and
(Char or Char)”

<search>

<search> <binop> <term>

not <search> and (<search>)

<term> <search><binop><term>

<regexp> <term> or <regexp>

Char<regexp> <regexp> Char

{<choices>} Char

<regexp>, <choices>

* <regexp>

Char

<search> ::== <search> <binop> <term>
| not <search> | <term>

<binop> ::== and | or
<term> ::== <regexp> | (<search>)
<regexp> :== Char<regexp> | Char

| {<choices>} | *
<choices> ::== <regexp> |

<regexp>,<choices>

44

Activity - Production Coverage

Derive a test
suite that
covers each
production in
this grammar.

expr : term | term * term | term / term

term : factor | factor + factor | factor - factor

factor : ATOM | LPAREN expr RPAREN

ATOM = 0..9

LPAREN = (

RPAREN =)

45

Activity Solution
expr : term | term * term | term / term

term : factor | factor + factor | factor - factor

factor : ATOM | LPAREN expr RPAREN

expr

term * term

factor factor + factor

ATOM ATOM LPAREN expr RPAREN

term / term

factor - factor factor

ATOM ATOM ATOM

ATOM * ATOM + (ATOM - ATOM /
ATOM)
ex: 9 * 8 + (7 - 6 / 5)

46

Boundary Condition
Grammar-Based Coverage

● BCGBC applies boundary conditions on the
number of times each recursive production is
applied per test.

● Choose a minimum and maximum number
of applications of a recursive production.
○ Generates tests that apply each the minimum,

minimum + 1, maximum, maximum -1.
○ Similar to boundary interior coverage.

47

Boundary Condition
Grammar-Based Coverage

● Start with the grammar

<model> ::== <modelNumber> <compSequence> <optCompSequence>
<compSequence> ::== <Component> <compSequence> | empty
<optCompSequence> ::== <OptComponent> <optCompSequence> | empty
<Component> ::== <ComponentType> <ComponentValue>
<OptComponent> ::== <ComponentType>
<modelNumber> ::== string
<ComponentType> ::== string
<ComponentValue> ::== string

● Split compound productions

<model> ::== <modelNumber> <compSequence> <optCompSequence>
<compSequence> ::== <Component> <compSequence>
<compSequence> ::== empty
<optCompSequence> ::== <OptComponent> <optCompSequence>
<optCompSequence> ::== empty
<Component> ::== <ComponentType> <ComponentValue>
<OptComponent> ::== <ComponentType>
<modelNumber> ::== string
<ComponentType> ::== string
<ComponentValue> ::== string

● Annotate with names and limits

Model <model> ::== <modelNumber> <compSequence> <optCompSequence>
CompSeq1, limit=16 <compSequence> ::== <Component> <compSequence>
CompSeq2 <compSequence> ::== empty
OptCompSeq1, limit=16 <optCompSequence> ::== <OptComponent> <optCompSequence>
OptCompSeq2 <optCompSequence> ::== empty
Comp <Component> ::== <ComponentType> <ComponentValue>
OptComp <OptComponent> ::== <ComponentType>
ModNum <modelNumber> ::== string
CompTyp <ComponentType> ::== string
CompVal <ComponentValue> ::== string

● Results in production coverage, plus:
○ 0 required components (compSeq1 * min)
○ 1 required component (compSeq1 * min + 1)
○ 15 required components (compSeq1 * max -1)
○ 16 required components (compSeq1 * max)
○ 0 optional components (optSeq1 * min)
○ 1 optional component (optSeq1 * min + 1)
○ 15 optional components (optSeq1 * max -1)
○ 16 optional components (optSeq1 * max)

48

Probabilistic Grammar-Based
Coverage

● Selection of productions can be biased by
assigning weights to each production and
factoring those into test generation.
○ For each production, assign a weight.

■ 10 = use 10x as often as those with weight 1
■ Equal weights indicate that those productions are

used an equal number of times.
■ 0 = never use this production

● Multiple sets of weights can be kept to model
different types of input.

49

We Have Learned

● If we build models from functional
specifications, those models can be used to
systematically generate test cases.
○ Models have structure. We can exploit that structure.
○ Functional testing, but in a form that makes it easier

to test.
● Helps identify important combinations of

input to the system.
● Coverage metrics based on the type of

model guide test selection.

50

We Have Learned

● State machines model expected behavior.
○ Cover states, transitions, non-looping paths, loops.

● Decision tables model complex
combinations of conditions and their
expected outcomes.
○ Cover basic conditions and their combinations.

● Grammars allow us to verify whether
complex input is handled correctly.

51

Next Time

● Finite State Verification
○ Reading: Chapter 8

● Homework:
○ Homework 3 due on the 3rd.
○ E-mail me if you have questions!

52

