
Course Overview:
Verification and Validation

CSCE 747 - Lecture 1 - 01/16/2018

Today’s Goals

Introduce The Class
● AKA: What the heck is going on?
● Go over syllabus
● What you should already know
● Clarify course expectations
● Assignments/grading
● Answer any questions
● Cover the basics of verification and validation

2

When is software ready
for release?

3

Our Society Depends on Software

This is software: So is this:

 Also, this:

4

Flawed Software Will Hurt Profits

“Bugs cost the U.S. economy $60 billion
annually… and testing would relieve one-third
of the cost.”

- NIST

“Finding and fixing a software problem after
delivery is often 100 times more expensive than
finding and fixing it before.”

- Barry Boehm (TRW Emeritus Professor, USC)

5

Flawed Software Will Be Exploited

6

Flawed Software Will Hurt People

In 2010, software problems were
responsible for 26% of medical
device recalls.

“There is a reasonable probability that
use of these products will cause
serious adverse health consequences
or death.”
- US Food and Drug

Administration
7

This Course

● The key to good software?
○ Verification and Validation

■ Does the software do what we promised?
■ Does the software meet the needs of its users?

● In this course, we will explore the testing
and analysis activities that make up the
V&V process.

8

Desired Course Outcomes
1. The students will be familiar with the process of verification and validation.
2. … will understand the process of applying tests to software and the

fundamental components of a test case.
3. … will be able to derive test cases from software requirement

specifications - including being able to partition input and output domains,
form test specifications, and identify valid combinations of input.

4. … will understand and be able to distinguish between methods of judging
test case adequacy and how to design tests that will accomplish the
obligations of such methods.

5. … will understand how to build models of system behavior and prove that
their obey required properties.

6. … will be able to make logical arguments that prove the correctness of
program implementations.

7. … will be able to write code to automate test execution and analysis.
8. … will be familiar with methods of measuring software reliability.

9

Lecture Plan (approximate)

● Introduction and Fundamentals (1 week)
● Functional and Combinatorial Testing (1 week)
● Test Case Adequacy/Structural Testing (1 week)
● Data Flow Testing (1 week)
● Testing Object-Oriented Software (1 week)
● Model-Based Testing (1 week)
● Finite State Verification (1 week)
● Proofs and Analysis (1 week)
● Execution and Automation (3 weeks)
● End-of-Testing Activities (1 week)
● Other Testing Activities (1 week)

10

Contact Info

● Instructor: Greg Gay (Dr, Professor, $#*%)
○ E-mail: greg@greggay.com
○ Office Hours: T/Th, 4:00-5:00 PM, 2247 Storey

Engineering and Innovation Center
● Website:

○ http://dropbox.cse.sc.edu/course/view.php?id=71
■ (Moodle - will be used for course material and

assignment submission)
○ http://greggay.com/courses/spring18csce747/

■ (Static backup - somewhat behind, but useful if
Moodle is down)

11

mailto:greg@greggay.com
http://dropbox.cse.sc.edu/course/view.php?id=71
http://greggay.com/courses/spring18csce747/

Textbook

Required:
● Software Testing and Analysis,

Mauro Pezze and Michal Young.
○ (Only one edition - I think

international editions are fine)
● Additional readings

○ 4-5 over the semester
○ Will be made available on

course webpage

12

Learning Modes

Lectures/Textbook

Class Discussions Group Project

13

Prerequisites

CSCE 740 - Software Engineering
● Not essential, but very helpful.

You need to be proficient in Java
● (and, ideally, C++)
● You should be able to read and write programs without

additional instruction.
● This is not a programming language class.

You need a basic understanding of algorithms,
logic, and sets.

14

Assignments and Grading

● Group Assignments (40% in total)
○ Groups of 3.
○ Frequent peer evaluations.

● Individual Assignments (10%)
○ Reading + 1 page summary

● Midterm/Final Exams (20% each)
● Participation (10%)

○ In-class activities.
○ Group participation.
○ Answering questions.

15

Expected Workload

This class can be time consuming.
● Understanding the material takes time.
● Project work requires team coordination.

Do not underestimate the project work.
● Good engineering is hard.
● Planning and scheduling your time is essential.
● Do NOT delay getting started.
● Appoint a team leader (and rotate the role)

16

Feedback

Problems with assignments, course questions,
feedback?
● Contact me! I like feedback!

Problem with instructor
● Also contact me
● Contact CS front office

17

Other Policies

Integrity and Ethics:
The homework and programs you submit for this class must be entirely
your own. If this policy is not absolutely clear, then please contact me.
Any other collaboration of any type on any assignment is not
permitted. It is your responsibility to protect your work from
unauthorized access.

Classroom Climate:
All students are expected to behave as scholars at a leading institute
of technology. This includes arriving on time, not talking during lecture
(unless addressing the instructor), and not leaving the classroom
before the end of lecture. Disruptive students will be warned and
potentially dismissed from the classroom.

18

Other Policies

Make-Up and Late Homework
● Make-ups for graded activities may be arranged if your absence is

caused by a documented illness or personal emergency.
● Homework assignments are due at the time noted on the

assignment handout. Late work is not accepted without prior
approval. Any assignment turned in after the due date will be
considered late and will be subject to a penalty of 10% per day,
including weekends and holidays.

19

Other Policies

Diversity
Students in this class are expected to respectfully work with all other
students, regardless of gender, race, sexuality, religion, or any other
protected criteria. There is a zero-tolerance policy for any student that
discriminates against other students.

Special Needs
We will provide, on a flexible and individual basis, reasonable
accommodations to students that have disabilities that may affect their
ability to participate in course activities or to meet course requirements
Students with disabilities should contact their instructor early in the
semester to discuss their individual needs.

20

When is software ready
for release?

21

Basic Answer...

Software is ready for release when you can argue
that it is dependable.
● Correct, reliable, safe, and robust.
● The primary process of making software

dependable (and providing evidence of
dependability) is Verification and Validation.

22

Verification and Validation

Activities that must be performed to consider
the software “done.”

● Verification: The process of proving that the
software conforms to its specified functional
and non-functional requirements.

● Validation: The process of proving that the
software meets the customer’s true
requirements, needs, and expectations.

23

Verification and Validation

Barry Boehm, inventor of the term “software
engineering”, describes them as:

● Verification:
○ “Are we building the product right?”

● Validation:
○ “Are we building the right product?”

24

Verification

● Is the implementation consistent with its
specification?
○ “Specification” and “implementation” are roles.

■ Source code and requirement specification.
■ Detailed design and high-level architecture.
■ Test oracle and requirement specification.

● Verification is an experiment.
○ Does the software work under conditions we set?
○ We can perform trials, evaluate the software, and

provide evidence for verification.

25

Validation

● Does the product work in the real world?
○ Does the software fulfill the users’ actual

requirements?
● Not the same as conforming to a

specification.
○ If we specify and implement all behaviors related to

two buttons, we can achieve verification.
○ If the user expected a third button, we have not

achieved validation.

26

Verification and Validation

● Verification
○ Does the software work as intended?

● Validation
○ Does the software meet the needs of your users?
○ This is much harder.

Validation shows that software is useful.
Verification shows that it is dependable. Both
are needed to be ready for release.

27

Verification and Validation:
Motivation

● Both are important.
○ A well-verified system might not meet the user’s

needs.
○ A system can’t meet the user’s needs unless it is

well-constructed.
● This semester largely focuses on

verification.
○ How can we ensure that the software we build is

dependable.
○ Testing is the primary activity of verification, and our

main focus in this class.

28

Required Level of V&V

The goal of V&V is to establish confidence that the
system is “fit for purpose.”
How confident do you need to be? Depends on:
● Software Purpose: The more critical the software,

the more important that it is reliable.
● User Expectations: When a new system is

installed, how willing are users to tolerate bugs
because benefits outweigh cost of failure recovery.

● Marketing Environment: Must take into account
competing products - features and cost - and speed
to market.

29

Basic Questions

1. When do verification and validation start?
When are they complete?

2. What techniques should be applied to obtain
acceptable quality at an acceptable cost?

3. How can we assess readiness for release?
4. How can we control the quality of successive

releases?
5. How can the development process be improved

to make verification more effective (in cost and
impact)?

30

When Does V&V Start?

● V&V starts as soon as the project starts.
● Feasibility studies must consider quality

assessment.
● Requirement specifications can be used to

derive test cases.
● Design can be verified against requirements.
● Code can be verified against design and

requirements.
● Feedback can be sought from stakeholders at

any time.

31

Types of Verification

Static Verification
● Analysis of static system artifacts to discover

problems.
○ Proofs: Posing hypotheses and making a logical

argument for their validity using specifications,
system models, etc.

○ Inspections: Manual “sanity check” on artifacts (such
as source code) by other people or tools, searching
for issues.

32

Advantages of Static Verification

● During execution, errors can hide other errors. It
can be hard to find all problems or trace back to a
single source. Static inspections are not impacted
by program interactions.

● Incomplete systems can be inspected without
additional costs. If a program is incomplete,
special code is needed to run the part that is to be
tested.

● Inspection can also assess quality attributes such
as maintainability, portability, poor programming,
inefficiencies, etc.

33

Dynamic Verification

● Exercising and observing the system to
argue that it meets the requirements.
○ Testing: Formulating controlled sets of input to

demonstrate requirement satisfaction or find faults.
○ Fuzzing: Spamming the system with random input to

locate security vulnerabilities, memory leaks, buffer
overruns, etc.

○ Taint Analysis: Assigning a bad value to a variable
and monitoring which system variables it corrupts
and how it corrupts them.

34

Dynamic Verification

● Static verification is not good at discovering
problems that arise from runtime interaction,
timing problems, or performance issues.

● Dynamic verification is often cheaper than
static - easier to automate.
○ However, it cannot prove that properties are met -

cannot try all possible executions.

35

The Trade-Off Game

Software engineering is the process of designing,
constructing and maintaining the best software
possible given the available resources.

We are always trading off between what we want,
what we need, and what we've got. As a NASA
engineer put it,
● “Better, faster, or cheaper - pick any two”

36

The Role of Software Engineers

Software engineers, therefore, aren’t just
responsible for designing, constructing, and
maintaining software.

They are the people we look to plan, make, and
justify well-informed decisions about trade-offs
throughout the development process.

37

Perfect Verification

● For physical domains, verification consists of
calculating proofs of correctness.

● Given a precise specification and a program,
we should be able to do the same… Right?
○ Verification is an instance of the halting problem.
○ For each verification technique, there is at least one

program for which the technique cannot obtain an
answer in finite time.
■ Testing - cannot exhaustively try all inputs.

○ We must accept some degree of inaccuracy.

38

Verification Trade-Offs
Three dimensions of inaccuracy:
● Pessimistic Inaccuracy - not

guaranteed to accept a
program even if the program
possesses the property.

● Optimistic Inaccuracy - may
accept a program that does
not possess a property.

● Property Complexity - if one
property is too difficult to
check, substitute one that is
easier to check or constrain
the types of programs
checked.

39

Assessing Verification Techniques

● Safe
○ No optimistic inaccuracy - it only accepts programs

that are correct with respect to that property.
● Sound

○ An analysis of a program with respect to property is
sound if the technique returns true ONLY when the
program does meet the property.

○ If true = correct and the technique is sound, then the
technique is also safe.

○ If true = incorrect and the technique is sound, you
allow optimistic but disallow pessimistic inaccuracy.

40

Assessing Verification Techniques

● Complete
○ An analysis of a property on a program is complete if

it always returns true when the program does satisfy
the program.

○ If true = correct, then complete admits only optimistic
inaccuracy.

● Often a trade-off between safe, sound, and
complete.

41

How Can We Assess the Readiness
of a Product?

● Identifying faults is useful, but finding all
faults is nearly impossible.

● Instead, need to decide when to stop
verification and validation.

● Need to establish criteria for acceptance.
○ How good is “good enough”?

● One option is to measure dependability
(availability, mean time between failures,
etc) and set a “acceptability threshold”.

42

Product Readiness

● Another option is to put it in the hands of
human users.

● Alpha/Beta Testing - invite a small group of
users to start using the product, have them
report feedback and faults. Use this to judge
product readiness.
○ Can make use of dependability metrics for a

quantitative judgement (metric > threshold).
○ Can make use of surveys as a qualitative judgement

(are the users happy with the current product?)

43

Ensuring the Quality of Successive
Releases

● Verification and validation do not end with
the release of the software.
○ Software evolves - new features, environmental

adaptations, bug fixes.
○ Need to test code, retest old code, track changes.

● Faults have not always been fixed before
release. Do not forget those.

● Regression Testing - when code changes,
rerun tests to ensure that it still works.
○ As faults are repaired, add tests that exposed them

to the suite.
44

Improving the Development Process

● Try to learn from your mistakes in the next
project.

● Collect data during development.
○ Fault information, bug reports, project metrics

(complexity, # classes, # lines of code, coverage of
tests, etc.).

● Classify faults into categories.
● Look for common mistakes.
● Learn how to avoid such mistakes.
● Share information within your organization.

45

We Have Learned

● Software should be dependable and useful
before it is released into the world.

● Verification is the process of demonstrating that
an implementation meets its specification.
○ This is the primary means of making

software dependable (and demonstrating
dependability).

○ Testing is the most common form of
verification.

46

We Have Learned

● Verification techniques can be static or
dynamic.
○ Often pessimistically or optimistically

inaccurate
○ Level of inaccuracy can be controlled by

simplifying properties.
○ Techniques strive to be safe, sound, and

complete.
■ But, obtaining one often involves losing

another.

47

Next Time

● More introduction:
○ Testing fundamentals.
○ Principles of analysis and testing.

● Reading:
○ Chapters 1-4 of testbook.

● Plan your team selection.
○ The earlier, the better!

48

