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Symbolic Execution

● Process of building predicates that describe 
which execution paths will be taken and their 
effect on program state.
○ Determines the conditions under which a path can 

be taken.
○ Identifies infeasible paths and paths that can be 

taken when they shouldn’t.
○ Can be used to generate tests targeted at particular 

paths in the system.
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Symbolic Execution

● Bridge between complex program behavior 
and analyzable logical structures. 
○ Enables complex analyses of programs through 

abstraction to a model of execution.
○ Allows proof of properties over small critical 

subsystems.
○ Allows formal verification of critical properties 

resistant to testing.
○ Allows formal verification of logical designs before 

code is written.
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What is Symbolic Execution?

Symbolic Execution
● Execute the program 

with symbolic values

● Statements compute 
new symbolic 
expressions

● Program state can be 
characterized by 
predicates made of 
symbolic expressions

Program Execution
● Execute the program 

with actual values.

● Statements compute 
new values for variables.

● Program state can be 
characterized by the 
values of variables.
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Assigning Meaning to Programs
void example(int n)

int i = 1;

int S = 0;

i > n

return;

T

S = S + i;

i = i + 1;

n ∈ I+

n ∈ I+ ^ i = 1

n ∈ I+^ i = 1 ^ S = 0

n ∈ I+^ i = 1 
^ S = 0 ^ i <= n 

n ∈ I+^ i = 1 
^ S = S + i ^ S∈ I+  
^ i <= n 

n ∈ I+^ S = S + i ^ S∈ 
I+ ^ 2 <= i <= n ^ i ∈ I+  

n ∈ I+^ S = S + i ^ S∈ 
I+ ^ 2 <= i <= n ^ i ∈ I+  

In the loop:
- We increase the value 

of S by i.
- i increases by 1.
- i <= n
- Therefore, S is a 

summation over 1 to i

n,i,s ∈ I+^ i <= n 
^ S = sum(1,i-1)  

n,i,s ∈ I+^ i <= n 
^ S = sum(1,i)  

n,i,s ∈ I+^ 2 <= i <= n 
^ S = sum(1,i-1)  

n,i,s ∈ I+^ i = n +1
^ S = sum(1,i-1) = sum(1,n)  

n,i,s ∈ I+^ i <= n +1
^ S = sum(1,i-1)  
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Binary Search
char *binarySearch( char *key, char *dictKeys[], char *dictValues[], int dictSize ) {

int low = 0;

int high = dictSize – 1;

int mid, comparison;

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

return 0;

}
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Effect of Executing a Statement

Symbolic Values
● Before:

○ low = L ^ high = H
● After:

○ low = L ^ high = H ^ 
mid = (L + H) / 2

Concrete Values
● Before:

○ low = 8 ^ high = 13
● After:

○ low = 8 ^ high = 13 ^ 
mid = 10

mid = (low + high) / 2;
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Dealing with Branches

high >= 
low

T

...

F

● Taking a branch adds a 
constraint to the 
program state.

● Add that constraint to 
the predicate describing 
the state.

low = L ^ high = H

low = L ^ high = H 
^ H >= L

low = L ^ high = H 
^ ! (H >= L)
(or H < L)
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Symbolic Execution

● “Satisfying the predicate” can mean finding 
concrete values that make it evaluate to true.
○ This is a test case forcing the program to take a 

path. If no values can be found, then this is an 
infeasible path.

● If there are a finite number of paths in a 
program, a symbolic executor can trace 
each and obtain predicates characterizing 
each one.
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Summary Information

● Symbolic representation of state can easily 
grow too complex to use.
○ And potentially an infinite number of paths.

● Can simplify the property we are checking:
○ P characterizes a state.
○ P => W

■ W is a simpler predicate than P.
○ We can use W instead of P. 

■ W is a summary of P.
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Example: Summary Information

Symbolic Values
● Before:

○ low = L ^ high = H
● After:

○ low = L ^ high = H ^ mid = (L + H) / 2

mid = (low + high) / 2;

mid = M ^ H >= M >= L
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Assertions

● Weaker predicate based on what must be 
true for the program to execute correctly.
○ Cannot be derived automatically.

● Also known as an assertion. 
○ A predicate stating what should be true at a 

particular point in program execution.
● Making an assertion marks our intention to 

verify that the predicate is true.
○ and that it is acceptable to replace part of the state 

with that property.
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Effect of Weakening

● Required at times to make symbolic 
execution possible for complex programs.

● That predicate is no longer sufficient to find 
input that forces execution along that path.
○ Satisfying that predicate is necessary but not 

sufficient to exercise the path.
○ Showing that the predicate cannot be satisfied still 

shows that the path is infeasible.
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Working with Loops

● Number of paths is infinite in the presence of 
loops.

● To reason with loops in symbolic execution:
○ Use a summary (assertion) to describes the program 

state when control reaches the loop.
■ Called a loop invariant.

○ Does not change based on the number of iterations.
○ When execution reaches the invariant, we check that 

the loop invariant is true at that point. 
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Verifying Correctness

● Choose a program segment.
○ At the beginning of that segment, place an assertion 

that must be true (a pre-condition).
○ At the end, place another assertion that must be true 

(a post-condition).
● Every program path is a sequence of 

segments from one assertion to the next.
● Verification = ensuring that any possible 

sequence of segments is logically valid with 
pre/post-conditions.
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Example - Binary Search
char *binarySearch( char *key, char *dictKeys[], char *dictValues[], int dictSize ) {

int low = 0;

int high = dictSize – 1;

int mid, comparison;

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

return 0;

}

pre-condition: ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]

loop invariant: ∀ i, 0 < i < size: dictKeys[i] = key => low <= i < 
high

● If the client obeys the pre-condition, the program will 
obey the post-condition.

● True when we reach the loop.
● True at beginning of each loop cycle.
● True after the end of the loop.
● Symbolic execution begins with the 

invariant and determines that it is 
true again following the path.

● The pre-condition must remain true 
as well.

○ The full loop invariant includes 
the pre-condition.
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Example - Binary Search

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

pre-condition (PC): ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]
loop invariant (LI): ∀ i, 0 < i < size: dictKeys[i] = key => low <= i < high

bindings: low = L ^ high = H

loop invariant (LI): ∀ k, 0 < k < size: dictKeys[k] = key => L <= k < H

bindings ^ PC ^ LI
bindings ^ PC ^ LI ^ H >= L

bindings ^ PC ^ mid = M ^ LI ^ H >= M >= L 

bindings ^ PC ^ mid = M ^ LI ^ H >= M >= L ^ dictKeys[M] < 
key  high = H ^ PC ^ mid = M ^ LI ^ H >= M >= L ^ dictKeys[M] < 
key ^ low = M+1  

PC ^ low = M+ 1 ^ high = H ^ mid = M ^
∀ k, 0 < k < size: dictKeys[k] = key => M+1 <= k < H  
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Example - Binary Search

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

pre-condition (PC): ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]
loop invariant (LI): ∀ i, 0 < i < size: dictKeys[i] = key => low <= i < high

bindings: low = L ^ high = H

loop invariant (LI): ∀ k, 0 < k < size: dictKeys[k] = key => L <= k < H

bindings ^ PC ^ LI
bindings ^ PC ^ LI ^ H >= L

bindings ^ PC ^ mid = M ^ LI ^ H >= M >= L 

bindings ^ PC ^ mid = M ^ LI ^ H >= M >= L ^ 
dictKeys[M] > key  

low = L ^ PC ^ mid = M ^ LI ^ H >= M >= L ^ dictKeys[M] < 
key ^ high = M-1  

PC ^ low = M+ 1 ^ high = H ^ mid = M ^
∀ k, 0 < k < size: dictKeys[k] = key => L <= k < M-1  
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Example - Binary Search

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

pre-condition (PC): ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]
loop invariant (LI): ∀ i, 0 < i < size: dictKeys[i] = key => low <= i < high

bindings: low = L ^ high = H

loop invariant (LI): ∀ k, 0 < k < size: dictKeys[k] = key => L <= k < H

bindings ^ PC ^ LI
bindings ^ PC ^ LI ^ H >= L

bindings ^ PC ^ mid = M ^ LI ^ H >= M >= L 

Verify the contract of the procedure:
Returns corresponding value from dictValues for 
the key in dictKeys, or null if key does not appear 
in dictKeys.

s=value ^ ∃i, 0 <= i < size: dictKeys[i] = k ^ 
dictValues[i] = value
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Example - Binary Search
char *binarySearch( char *key, char *dictKeys[], char *dictValues[], int dictSize ) {

int low = 0;

int high = dictSize – 1;

int mid, comparison;

while (high >= low) {

mid = (high + low) / 2; 

comparison = strcmp( dictKeys[mid], key );

if (comparison < 0) {

low = mid + 1;

} else if ( comparison > 0 ) {

high = mid - 1;

} else {

return dictValues[mid];

 }

}

return 0;

}

pre-condition (PC): ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]

bindings: low = L ^ high = H
loop invariant (LI): ∀ k, 0 < k < size: dictKeys[k] = key => L <= k < H

Verify the contract of the procedure:
Returns corresponding value from dictValues for 
the key in dictKeys, or null if key does not appear 
in dictKeys.

post-condition: s=0 ^ ∄ a, 0 <= a < size : dictKeys[a] = key

bindings ^ PC ^ LI ^ L>H

● Presence of the key implies L < H
● But, L > H
● Therefore, the key is not present.
● The post-condition is met.
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Activity

The loop body of the binary 
search can be modified to:

Demonstrate using 
symbolic execution that the 
path that traverses the false 
branch of all three 
statements is infeasible.

if (comparison < 0){

low = mid + 1;

}

if (comparison > 0){

high = mid -1;

}

if (comparison == 0){

return dictValues[mid];

}
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Activity - Solution

if (comparison < 0){

low = mid + 1;

}

if (comparison > 0){

high = mid -1;

}

if (comparison == 0){

return dictValues[mid];

}

low = L ^ high = H ^ mid = M ^ comparison = C ^ !(C<0)

low = L ^ high = H ^ mid = M ^ comparison = C ^ !(C<0) ^ !(C>0)
low = L ^ high = H ^ mid = M ^ comparison = C ^
 (!(C<0) ^ !(C>0) => (C=0))

low = L ^ high = H ^ mid = M ^ comparison = C ^
 (!(C<0) ^ !(C>0) => (C=0)) ^ !(c=0)
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Compositional Reasoning

● Programs can be structured and verified in a 
hierarchy of segments.

● Loop invariant is placed at beginning of the 
loop so we can compose facts about pieces 
of a program.

● Effect of a block is described as a Hoare 
Triple:
○ (|pre|) block (|post|)
○ If pre is satisfied at entry, then after executing block, 

post will be satisfied.
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Inference Rules

● Standard templates for reasoning with triples
● While Loops:

(|I ^ C|) S (|I|)
(I) while(C) { S } (|I ^ !C|)

● Formula on top line is the premise.
● Formula on the bottom line is the conclusion.
● If we can verify the premise, we can infer the 

conclusion.

24



Inference Rules - While

● While Loops:
(|I ^ C|) S (|I|)

(|I|) while(C) { S } (|I ^ !C|)

● Premise:
○ If invariant (I) and loop condition (C) are true before 

the loop, then after executing the loop body (S), I will 
still be true. 

● Conclusion:
○ The loop takes the program from a state where I is 

true to a state where I is true and C is not.
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Inference Rules - If-Statement

(|P ^ C|) thenpart (|Q|) (|P ^ !C) elsepart (|Q|)
(|P|) if(C) { thenpart } else {elsepart} (|Q|)

● Premise:
○ If pre-condition (P) and if condition (C) are true, then 

after executing thenpart a postcondition (Q) will be 
true. If P is true and C is false, then after executing 
elsepart, Q is true.

● Conclusion:
○ The if-statement takes the program from a state 

where P is true to a state where Q is true.
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Compositional Reasoning

● Can compose proofs about small parts of the 
program into proofs about larger parts.
○ Inference rule for while lets us take a triple about the 

loop body and infer a triple about the whole loop.
● Summarize the effect of a block of code by a 

pre-condition and post-condition. 
○ Can summarize the effect of the whole procedure in 

the same way.
○ Establish a contract for that block of code.
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Compositional Reasoning

● The contract of a procedure is:
○ Pre-condition: What the client is required to provide.
○ Post-condition: What the procedure promises to 

establish or return.
● Can use that contract whenever the 

procedure is called to verify input and results
● Binary Search:

○ (| ∀ i, j, 0 <= i < j < size: dictKeys[i] <= dictKeys[j]|)
○ s = binarySearch(k, dictKeys, dictValues, size)
○ (| (s=value ^ ∃i, 0 <= i < size: dictKeys[i] = k ^ dictValues[i] = 

value) v s=0 ^ ∄ a, 0 <= a < size : dictKeys[a] = key)|)
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Activity 2 - Contract
● The following method 

calculates the sum of an 
array of floats.

● Write the pre- and 
post-conditions for this 
method.

float sum(int array[], int len) { 
float sum = 0.0; 
int i = 0; 
while (i < length) { 

sum = sum + array[i]; 
i = i + 1; 

} 
return sum; 

}
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Activity 2 - Contract
(|pre|) block (|post|)

(| len >= 0 ^ array.length = len|)
s = sum(array,len)
(|s = ∑j=0

len array[j]|)

float sum(int array[], int len) { 
float sum = 0.0; 
int i = 0; 
while (i < length) { 

sum = sum + array[i]; 
i = i + 1; 

} 
return sum; 

}
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Classes and Data Structures

● Classes often maintain data structures.
○ If a method is called on that structure, the 

responsibility for that structure’s correctness belongs 
to the class, not the caller.

● Modular verification must obey modular 
design of the program.
○ Contract cannot reveal private details.
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Abstract Model of Data

● Data structure module provides a collection 
of methods with related specifications.
○ Specifications are contracts with clients.
○ Specify pre and post-conditions of an abstract model 

of the encapsulated data.
■ Dictionary: 

● Contracts in terms of <key,value> pairs.
● Actual implementation could be a hashmap, sorted array, 

tree, etc. 
● Details of implementation hidden.
● Reason over correctness of the abstraction.
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Structural Invariants

● Class must preserve properties over the 
(abstract) data structure it maintains.
○ If structure is sorted arrays, then the class must 

maintain the sorted order.
○ If structure is balanced search tree, then the class 

must keep the tree balanced.
● Called structural invariants.

○ Similar to loop invariant.
○ Must hold before method invocation and after return.
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Abstraction Function

● Behavior must reflect the abstract model.
● Need an abstraction function to map 

concrete states to abstract states. 
○ For dictionary, map implementation to <key,value> 

pairs.
○ If the implementation is java.util.map, the contract for 

get(key) method:
(|<key, value> ∈ ∅(dict)|)
o = dict.get(k)
(|o = value|)
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We Have Learned

● Symbolic execution is the process of 
establishing constraints on the values of 
variables as a particular path is taken.
○ Hand execution using symbols instead of concrete 

values. Rules governing any execution of a path.
○ Bridge from concrete execution of a complex 

program to mathematical logic structures that can be 
reasoned over.

○ Used to prove correctness of pieces of a program.
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We Have Learned

● To perform over loops, methods, and data 
structures, must establish contracts (pre and 
post-conditions) on pieces of the program.
○ Can then reason about combinations of these 

pieces, as correctness is proven over the program 
hierarchy. 

○ Allows checkable specifications of intended 
behavior.
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Next Time

● Automated Test Case Generation

● Homework:
○ Reading assignment 3 - due April 10th.
○ Assignment 3 - due tonight!
○ Assignment 4 - out soon!
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