
Project Automation:
Build Systems and
Continuous Integration
CSCE 247 - Lecture 10 - 02/20/2019

Project Automation

● Last time, we discussed automating test
execution using unit testing frameworks.
○ Tests can be re-executed on command.
○ Much faster than human-in-the-loop testing.
○ Reduced human effort and risk of human error.

● Testing is not all that can be automated.
○ Project compilation, installation, deployment, etc.

● Today:
○ Project build automation: Automating the entire

compilation, testing, and deployment process.
○ Continuous integration: Executing and managing

the build process each time code is checked in.
2

Build Systems

3

Build Systems

● Building software, running test cases, and
packaging and distributing the executable
are very common, effort-intensive tasks.

● Building and deploying the project should be
as easy as possible.

● Build systems ease this process by
automating as much of it as possible.
○ Repetitive tasks can be automated and run at-will.

4

Build Systems

● Build systems allow control over code
compilation, test execution, executable
packaging, and deployment to production.

● Script defines actions that can be
automatically invoked at any time.

● Many frameworks for build scripting.
○ Most popular for Java include Ant, Maven, Gradle.
○ Gradle is very common for Android projects.

5

Build Lifecycle

● Validate the project is correct and all
necessary information is available

● Compile the source code of the project.
● Test the compiled source code using a

suitable unit testing framework.
○ Run unit tests against classes and subsystem

integration tests against groups of classes.
● Take the compiled code and package it in

its distributable format, such as a JAR.
6

Validate Compile Test Package Verify Install Deploy

Build Lifecycle

● Verify - run system tests to ensure quality
criteria are met.
○ System tests require a packaged executable.
○ This is also when tests of non-functional criteria like

performance are executed.
● Install the package for use as a dependency

in other projects locally.
● Deploy the package to the installation

environment.
7

Validate Compile Test Package Verify Install Deploy

Apache Ant

● Ant (Another Neat Tool) is a build system for
Java projects.

● Build scripts define a set of targets that can
be executed on command.
○ Targets can correspond to lifecycle phases or other

desired automated tasks.
○ Targets can trigger other targets.
○ Build scripts written in XML.

■ Platform neutral.
● But can invoke platform-specific commands.

■ Human and machine readable.
■ Created automatically by many IDEs (Eclipse).

8

A Basic Build Script

● File typically named build.xml, and placed
in the base directory of the project.

● All build scripts require a project element
and at least one target.
○ Project defines a name and a default target.
○ This target prints project information.

■ Echo prints information to the terminal.

9

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

Targets

● A target is a collection of tasks you want to
run in a single unit.
○ Targets can depend on other targets.
○ If you issue the deploy command, it will complete

the package target first, which will complete clean
and compile first.

○ Dependencies are denoted using the depends
attribute.

10

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Targets

● Target attributes:
○ name defines the name of the target (required)
○ depends lists dependencies of the target.
○ description is used to add a short textual

description of the target.
○ if and unless allow execution of the target to

depend on a conditional attribute.
■ Execute the target if the attribute is true, or

execute is unless the attribute is true.
11

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Executing targets

● In the command line, invoke:
○ ant <target name>

● If no target name is supplied, the default will
be executed.
○ In this case, ant and ant info will give the same

result because info is the default target.

12

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

>> ant

Buildfile: build.xml

info: [echo] Hello World - Welcome to Apache

Ant!

BUILD SUCCESSFUL

Total time: 0 seconds

Properties

● XML does not natively allow variable declaration.
○ Instead, Ant allows the creation of property

elements, which can be referred to by name.
<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <property name = "sitename" value = "http://cse.sc.edu"/>
 <target name = "info">
 <echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
 </target>
</project>

● Properties have a name and a value.
○ Property value is referred to as ${property name}.
○ Ant pre-defines ant.version, ant.file (location of the

build file), ant.project.name,
ant.project.default-target, and other properties.

13

Property Files

● A separate file can be used to define a set of
static properties.
○ Allows reuse of a build file in different execution

environments (development, testing, production).
○ Allows easy lookup of property values.

● Typically called build.properties and stored
in the same directory as the build script.
○ Lists one property per line: <name> = <value>
○ Comments can be added using # <comment>

14

Property Files

● build.xml

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <property file = "build.properties"/>
 <target name = "info">
 <echo>You are at ${sitename}, version ${buildversion}.</echo>
 </target>
</project>

● build.properties
The Site Name

sitename = http://cse.sc.edu

buildversion = 3.3.2

15

Conditions

● Conditions are properties whose value is determined by and and or
expressions.
○ And requires each listed property to be true.

■ In this case, both foo.txt and bar.txt must exist.
● (available is an Ant command that checks for file existence)

○ Or requires only one listed property to be true.
○ Calling target myTarget.check creates a property

(myTarget.run) that is true if both files are present.
○ When myTarget is called, it will run only if myTarget.run is true.

16

<target name = "myTarget" depends = "myTarget.check" if = "myTarget.run"> </target>

<target name = "myTarget.check">
 <condition property = "myTarget.run">
 <and>
 <available file = "foo.txt"/>
 <available file = "bar.txt"/>
 </and>
 </condition>
</target>

Ant Utilities

● Fileset generates a list of files matching set criteria for
inclusion or exclusion.
○ ** means that the file can be in any subdirectory.
○ * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
 <include name = "**/*.java"/>
 <exclude name = "**/*Stub*"/>
</fileset>

● Path is used to represent a classpath.
○ pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">
 <pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>
 <fileset dir = "lib"> <include name = "**/*.jar"/> </fileset>
</path>

17

Building a Project
<project name = "Hello-World" basedir = "." default = "build">
 <property name = "src.dir" value = "src"/>
 <property name = "build.dir" value = "target"/>
 <path id = "master-classpath">
 <fileset dir = "${src.dir}/lib"> <include name = "*.jar"/> </fileset>
 <pathelement path = "${build.dir}"/>
 </path>

 ...
</project>

● Properties src.dir and build.dir define where the
source files are stored and where the built classes are
deployed.

● Path master-classpath includes all JAR files in the lib
folder and all files in the build.dir folder.

18

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 ...

 <target name = "clean" description = "Clean output directories">
 <delete>
 <fileset dir = "${build.dir}">
 <include name = "**/*.class"/>
 </fileset>
 </delete>
 </target>
</project>

● The clean target is used to prepare for the build process
by cleaning up any remnants of previous builds.
○ In this case, it deletes all compiled files (.class)
○ May also remove JAR files or other temporary

artifacts that will be regenerated by the build.
19

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 ...

 <target name = "build" description = "Compile source tree java files">
 <mkdir dir = "${build.dir}"/>
 <javac destdir = "${build.dir}" source = "1.8" target = "1.8">
 <src path = "${src.dir}"/>
 <classpath refid = "master-classpath"/>
 </javac>
 </target>

</project>

● The build target will create the build directory, compile
the source code (using javac), and place the class files
in the build directory.
○ Can specify which java version to target (1.8).
○ Must reference the classpath to use during compilation.

20

Creating a JAR File

● The jar command is used to create a JAR (executable)
from your compiled classes.

<target name = "package">

 <jar destfile = "lib/util.jar" basedir = "${build.dir}/classes"
 includes = "app/util/**" excludes = "**/Test.class">

 <manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>

 </jar>

</target>

○ destfile is the location to place the JAR file.
○ basedir is the base directory of included files.
○ includes defines the files to include in the JAR.
○ excludes prevents certain files from being added.
○ The manifest declares metadata about the JAR.

■ Attribute Main-Class makes the JAR executable.

21

Running Unit Tests

● JUnit tests are run using the junit command.
<target name = "test">
 <junit haltonfailure = "true" haltonerror = "false"
 printsummary = "true" timeout = "5000">
 <test name = "com.utils.UtilsTest"/>
 </junit>
</target>

○ test entries list the test classes to execute.
○ haltonfailure will stop test execution if any tests fail,

haltonerror if errors occur.
○ printsummary displays test statistics (number of

tests run, number of failures/errors, time elapsed).
○ timeout will stop a test and issue an error if the

specified time limit is exceeded.
22

Best Practices

● Automate everything you can!
○ Ant can integrate with version control, run scripts,

send files, zip files, etc.
○ Use it as a comprehensive project management tool.

● Require all team members to use Ant.
○ Even if different team members use different IDEs or

workflow, make them use Ant to build the project.
○ Require an Ant build before checking changes into

version control.
● Provide a “clean” target.

○ All build files need the ability to clean up before a
fresh build. Clean should only retain the files in VCS.

23

Best Practices: Follow Consistent
Naming Conventions

● Call the build file build.xml, properties
should be stored in build.properties.
○ And these should be in the root of the project.

● Prefix internal targets with a hyphen.
○ “build” might be available for external use, but a

subtarget “-build.part1” might not be intended for use
in isolation.

○ By prefixing a hyphen, you give readers context.
○ Hyphenated targets also cannot be run from the

command line.
● Format and document the XML file.

○ Try to make the file readable to the human eye.
24

Best Practices: Design for
Maintenance

● Will your build file be readable in the future?
● Will the file execute on a clean machine?

○ Document the build process.
■ Write a text file describing the build and

deployment process.
■ List programs and libraries needed for the build.

○ Avoid dependencies on programs/JAR files that are
not stored with the project.
■ If licensing allows, store external libraries with the

project for easier builds.
○ Do not distribute usernames/passwords in the build

files. These change + this is bad security.
25

Continuous Integration

26

Continuous Integration

● Development practice that requires code be
frequently checked into a shared repository.

● Each check-in is then verified by an
automated build.
○ The system is compiled and subjected to an

automated test suite, then packaged into a new
executable.

○ Uses the build script you wrote.
● By integrating regularly, developers can

detect errors quickly, and locate them more
easily.

27

CI Practices

● Maintain a code repository.
● Automate the build.
● Make the build self-testing.
● Every commit should be built.
● Keep the build fast.
● Test in a clone of the production environment.
● Make it easy to get the latest executable.
● Everyone can see build results.
● Automate deployment.

28

How Integration is Performed

● Developers check out code to their machine.
● Changes are committed to the repository.
● The CI server:

○ Monitors the repository and checks out changes
when they occur.

○ Builds the system and runs unit/integration tests.
○ Releases deployable artefacts for testing.
○ Assigns a build label to the version of the code.
○ Informs the team of the successful build.

29

How Integration is Performed

● If the build or tests fail, the CI server alerts
the team.
○ The team fixes the issue at the earliest opportunity.
○ Developers are expected not to check in code they

know is broken.
○ Developers are expected to write and run tests on all

code before checking it in.
○ No one is allowed to check in while a build is broken.

● Continue to continually integrate and test
throughout the project.

30

TravisCI

● CI service that is free for open-source
developers, hooked into GitHub.

● Connects to a GitHub repository and
performs the CI process at specified times.
○ When code is pushed to a repository.
○ When a pull request is created.

● Adds a “badge” to the GitHub project page
displaying the current build status.

31

TravisCI Process

● When code is checked into a repository,
TravisCI starts a job.
○ An automated process that clones the repository into

a virtual environment.
■ An isolated environment with a clean OS install.

○ A job is split into a series of phases.
■ Sequential steps of a job.
■ Three core phases in TravisCI:

● Install: Installs required dependencies in the virtual
environment.

● Script: Performs build tasks (compile, test, package, etc.)
● Deploy: Deploy code to a production environment (Amazon,

Heroku, etc.)

32

The TravisCI Configuration File

● Travis uses a config file, .travis.yml, to
determine how to build the project.

language: java
jdk: oraclejdk8
install: ...
script: ...

○ Language informs TravisCI which language you are
developing in.
■ There is a default build process for all supported

languages.
○ For Java, the jdk field lists the compiler you want to

use to build.
33

The TravisCI Configuration File
os: linux

● Used to determine the OS you want to build
on. Supports Linux and MacOS.

addons:

 apt:

 packages:

 - maven

● Addons are additional programs you need
to perform a build.
○ Apt is a package manager used in Linux.
○ This example says to install the Maven package

before performing the build.
34

The TravisCI Configuration File
env:

- MY_VAR=EverythingIsAwesome

- NODE_ENV=TEST

● Env is used to set up environmental
variables needed to perform a build.

before_install: (after_install, before_script, after_script, etc)

 - ...

● Used to perform commands before or after
one of the major phases (install, script,
deploy).

35

Install, Script, Deploy

● Major phases specified by listing a set of
commands to run.

● If you have a build file, you do not need to
explicitly specify commands.
○ TravisCI can detect Ant, Maven, and Gradle build

files and has default targets it will run.
○ By default, the script phase will execute “ant test”.

■ By convention, this will compile and test the
project.

■ If you want to execute different targets instead,
you can specify this in the configuration file.

36

Best Practices

● Minimize build time.
○ Time spent waiting for results is wasted time.
○ Do not make developers wait more than 10 min.

■ If they need to switch tasks, that adds time.
○ TravisCI can execute jobs in parallel. Split the test

suite into multiple jobs and execute them
concurrently in their own virtual environments.

● Pull complex logic into shell scripts.
○ The configuration file will run any commands you list.
○ If your build task is complex, split commands into

their own file and call that file.
○ Scripts can be run outside of TravisCI too.

37

Best Practices

● Test multiple language versions for libraries.
○ Libraries need to operate in multiple version of a

language. Make sure you can build in each of them.
○ You can specify multiple versions in the

configuration file (i.e., openjdk8, openjdk9).
■ Each will be tried when you build.

● Skip unnecessary builds
○ If you just change documentation or comments,

there is no reason to re-test.
○ Skip commits by adding “[ci skip]” to the commit

message.
○ Can also cancel builds on the TravisCI website.

38

Ant and TravisCI Demo
Ant:
https://github.com/apache/commons-lang/blob/687b2e62b7c6e81cd9d5
c872b7fa9cc8fd3f1509/build.xml
TravisCI: https://github.com/Greg4cr/defects4j/blob/master/.travis.yml

39

We Have Learned

● Testing is not all that can be automated.
○ Project compilation, installation, deployment, etc.

● Project build automation:
○ Automating the entire compilation, testing, and

deployment process.
○ Ant is an XML-based language for automating the

build process.
● Continuous integration:

○ Executing and managing the build process each
time code is checked in.

○ TravisCI is a common, free CI system.
40

Next Time

● Unit Testing Laboratory
○ Bring a laptop (at least one per group), with an IDE

installed that supports JUnit (Eclipse, IntelliJ).
○ Download code for MeetingPlanner from the course

website and import it into the IDE.

● Assignment 2
○ Due March 3rd

41

