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Today’s Goals

● Define design
● Introduce the design process
● Overview of design criteria

○ What results in a good design?

2



What is Design?

Design is the creative process of transforming a 
problem into a solution.
● In our case, transforming a requirements 

specification into a detailed description of the 
software to be implemented.

● Requirements - what we’re going to build.
● Design - how to build it. A description of the 

structure of the solution.
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What is Design?

Design is the process of going from this:

Software
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What is Design?
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What is Design?

Design is the process of defining the structure 
of the software.
● What units make up the codebase?
● How do those units connect to perform the 

required functions?
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General Design Stages

Identify nature of 
requirements

Discussions 
with Customers

Analyze problem 
and derive 

solution

High-Level 
Requirements

Postulate a 
design solution

System 
Specification

Validate design 
against 

specification
Potential 
Design

Seek a new 
design

Refine designPotential 
Design

Implement 
solution

1

2

3

Final Design 
“Blueprints”
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Stages of Design

Three repeating stages:
● Problem Understanding

○ Look at the problem from different angles to discover 
what needs the design needs to capture.

● Identify Solutions
○ Evaluate possible solutions and choose the most 

appropriate in terms of available resources.
● Describe and Document Chosen Solution 

○ Use graphical, formal, or other descriptive notations 
to describe the components of the design.
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Stages of Design

Design is performed at multiple levels of 
granularity:
● Architecture

○ How is the system structured into subsystems?
○ How do those subsystems work together?

● Unit
○ What units make up these subsystems?
○ How do these units work together?

● Low-Level
○ What algorithms will be employed?
○ What data structures will be used?
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Design Activities

Architectural 
Design

Requirements 
Specification

System 
architecture 
(high-level 

breakdown of 
system)

Interface 
Design

Component 
Design Data Design Algorithm 

Design

How subsystems 
interact with each 

other and how 
external users 
and systems 

interact with your 
system

A listing of the 
individual classes 

within your 
system

The format of 
data that is 

produced and 
consumed by 
your system

Algorithms used 
to implement 

system 
functionality.
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The Design Process

● Design takes place in overlapping stages.
○ It is artificial to separate them into distinct phases. 

Some separation occurs, but these phases take 
place largely at the same time.

● In practice - design is an exercise filling in 
the missing details.
○ However, don’t forget about the big picture. Keep 

looking at all levels of abstraction to make sure 
you’re designing the right solution.
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Basic Design Strategies
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Design Strategies

UnitA

UnitB ...

UnitD ... ... ...

UnitN

Systems are typically 
designed as a hierarchy.
● UnitN provides a service 

used by UnitD.
● UnitD provides a service 

used by UnitB.
● UnitB provides a service 

used by UnitA.

Design strategies dictate how 
these units and their 
connections are laid out.
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Centralized Design

● System is designed from a functional 
viewpoint: call and return model. 
○ Typical in C and non-OO languages.

● Execution is controlled from a central point in 
the system.
○ A method is called, the result is passed back to the 

controlling location, then that is passed into the next 
method.

○ System is designed as a set of independent services 
that communicate only with a central master 
component.
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Centralized Design

● The system state is centralized and shared 
between the functions operating on that 
state.
○ All data is stored by the master component. 
○ Each called component receives all data it needs 

from the master. 
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Centralized View of a Compiler

Scan 
Source

Build 
Symbol 
Table

Source Program

Tokens

Analysis
Tokens, 
Symbols

Generate 
Binary

Syntax 
Tree

Object 
Code

Output 
Errors

Error 
Indicator

Error 
Messages

tokens = scanSource(program);
symbols=buildSymbolTable(tokens);
try{

tree=analysis(tokens,symbols);
generateBinary(tree);

catch(errors){
print errors

}

Main
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Decentralized Design

● Basis of object-oriented design
● System is designed as a collection of 

interacting components.
● System state is decentralized and each 

component manages its own data.
● Multiple instances of an component may 

exist and communicate.
● How most modern systems are designed.

○ Easier to isolate errors in one component.
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Decentralized View of a Compiler

Token 
Stream

Symbol 
Table

Source Program

Add

Syntax 
Tree

Abstract 
Code

Error 
Messages

Scan

Grammar

Get
Check

Build Print

Generate

Object 
Code

Generate
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Design Strategies

UnitA

UnitB ...

UnitD ... ... ...

UnitN

Systems are typically 
designed as a hierarchy.
● Higher-level units make 

use of many lower-level 
units.

● Lower-level units tend to 
stand alone.
○ Small, self-contained, 

rarely call other 
components.
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Top-Down Design

● In principle, top-down design involves 
starting at the uppermost components, 
design those, and work down the hierarchy 
level-by-level.

● Choose a major system function.
● Decide how to break it into components.
● Decide how to break those components into 

smaller subcomponents.
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Top-Down Design

● In practice, large system design is never 
truly top-down.
○ Some branches are designed before others.
○ Designers reuse experience (and sometimes 

components) during the design process.
○ Sometimes, the lower levels need to be designed for 

the top-level to be completed.
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Bottom-Up Design

● In principle,bottom-up design involves 
starting with standalone components, then 
assembling them into a complete system.

● In practice, large system design is never 
truly bottom-up.
○ An efficient system cannot be designed 

without planning for integration. The 
complete picture must be kept in mind.
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Key Points

● Design is the process of deciding what 
components make up the software, and how 
they connect.
○ The structure of the software.

● Design activities include architectural design, 
interface design, component design, data 
design, and algorithm design.
○ But this is a messy process where phases overlap 

and activities cycle.
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What are the criteria for a 
“good” design?

24



Design Quality

● No simple answer.
● Design quality is an elusive concept.

○ Depends on organizational priorities, and involves 
balancing competing objectives.

● A “good” design may be the most efficient, 
the cheapest, the most maintainable, the 
most reliable, etc…
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Design Quality

● A good design results in efficient software.
● Even more important...
● Software will change over time.

○ During implementation, after release.
● A good design allows changes to be made.

○ While also protecting what works from any side 
effects of those changes.
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Design Attributes

● Simplicity
● Modularity

○ Low Coupling
○ High Cohesion
○ Information Hiding
○ Data Encapsulation

● Other “abilities”
○ Adaptability
○ Traceability
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Expensive to Maximize Attributes

Costs rise exponentially if very high levels of an 
attribute are required.

Cost

Efficiency
(Clarity)
(Maintainability)
(etc.) 28



Modularity

A complex system must be broken down into 
smaller modules.

Three goals of modularity:
● Decomposability

○ Break the system down into understandable 
modules.

● Composability
○ Construct a system from smaller pieces. 

● Ease of Understanding
○ The system will change, we must understand it.
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Modularity Properties

● Cohesion = The degree to which modules 
are compatible.

● Coupling = The degree of interdependence 
between modules.

We want high cohesion and low coupling.
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Cohesion

● The degree to which modules are 
compatible. A measure of how well a 
component “fits together”.

● A component should implement a single 
logical entity or feature of the software.

● A high level of cohesion is a desirable 
design attribute because changes are 
localized to a single, cohesive component.
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Types of Cohesion

● Logical Cohesion (weak)
○ Components that perform similar functions are 

grouped.
● Temporal Cohesion (weak)

○ Components that are activated at the same time are 
grouped.

● Procedural Cohesion (weak)
○ The elements in a component make up a single 

control sequence.
● Sequential Cohesion (medium)

○ The output for one part of a component is the input 
to another part.
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Levels of Cohesion

● Communicational Cohesion (medium)
○ All of the elements of a component operate on the 

same input or produce the same output.
● Functional Cohesion (strong)

○ Each part of a component is necessary for the 
execution of a single system feature.

● Object/Data Cohesion (strong)
○ Each operation modifies or allows inspection of 

stored object attributes.
○ The class stores data and all operations performed 

on that data.
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Cohesion as a Design Attribute

● Not well-defined.
○ Despite guidelines, cohesion is subjective 

and can’t be easily measured.
○ Often very difficult to figure out what is 

related.
■ Some code is used by multiple classes.

● Inheriting attributes from super-classes 
weakens cohesion.
○ To understand a component, the super-classes as 

well as the component class must be examined.
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Coupling

● The degree of interdependence between 
modules. A measure of the strength of the 
interconnections between components.
○ Is code from another class called often?
○ How much data is passed during those calls?

● Loose coupling means component changes 
are unlikely to affect other components.
○ Loose coupling can be achieved by storing local 

data in objects and communicating solely by 
passing data through component’s parameters. 
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Tight Coupling

Component A Component B

Component C Component D

Shared 
Data
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Loose Coupling

Component A

A’s Data

Component B

B’s Data

Component C

C’s Data

Component D

D’s Data
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Food for Thought

● How does an OO language like Java or C++ 
support low coupling and high cohesion?
○ How can we mess it up?

● How do global variables affect coupling?
● How about complex data structures?

○ … and pointers?
● What does inheritance do to coupling and 

cohesion?
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Coupling and Inheritance

● Object-oriented systems can be loosely 
coupled because there is no need for shared 
state and objects communicate using 
message passing.

● However, an object class is coupled to its 
super-classes.
○ Changes made to the attributes or operations in a 

super-class propagate to all sub-classes. Such 
changes must be carefully controlled.
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Information Hiding

● Put the complexity inside of a “black box”
○ Hide it from the components that use that “box”.
○ The user does not need to know how the box works, 

just what it does.
● Greatly reduces the amount of information 

the designer needs to understand at once.
● Examples:

○ Functions, Interfaces, Classes, Libraries
● If used properly, helps ensure loose 

coupling.
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Information Hiding Example

int[] sortAscending(int[] unsorted, int length);

● We do not know what sort routine is used.
● All we know is what the interface is and what 

the module accomplishes.
● Allows designers to focus on one part of the 

system at a time, without worrying about 
other components.

41



Data Encapsulation

● Encapsulation is the principle of building a 
barrier around a collection of items.

● Encapsulate the data a module is working 
on.
○ Protect the data from unauthorized access.
○ Nobody else can mess with the data.
○ If it gets corrupted, it must have been the fault of this 

component. 
● Makes the design more robust.
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Encapsulation Example

Version 2:
class Adder{

private int total;
void addNum(int number){

total += number;
}

int getTotal(){

return total;

}
};
int main( )
{
   Adder a; 
   a.addNum(10);
   a.addNum(20);
   a.addNum(30);
   cout << "Total " << a.getTotal() <<endl;
   return 0;
}

Version 1:
class Adder{

int total;
void addNum(int number){

total += number;
}

};

int main( )
{
   Adder a;
   
   a.addNum(10);
   a.addNum(20);
   a.addNum(30);

   cout << "Total " << a.total <<endl;
   return 0;
}
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Understandability

The design should be understandable by the developers - 
unambiguous and easy to follow. Related to many 
component characteristics:
● Cohesion

○ Can each component be understood on its own?
● Naming

○ Are meaningful component (class, method, variable) 
names used?

● Documentation
○ Is the design well-documented? Are decisions justified? 

Rationale noted?
● Complexity

○ Are complex algorithms used?
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Understandability

● High complexity means many relationships 
between different entities in the design.
○ Hence, the design is hard to understand.

● Most “measurements” of design quality 
measure the complexity.
○ They tell you to avoid high complexity (high number 

of relations between components).
○ These metrics tend to be of little use - the number is 

irrelevant - instead, be careful to only include 
necessary relations.
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Adaptability

● A design is adaptable if:
○ Its components are loosely coupled.
○ It is well-documented and the documentation is kept 

up to date.
○ There is an obvious correspondence between 

design levels (interface, components, data, etc).
○ Each component is a self-contained entity (strong 

cohesion). 
● To adapt a design, it must be possible to 

trace links between components so that 
change consequences can be analyzed.
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Adaptability and Inheritance

Inheritance improves adaptability.
● Components may be expanded without 

change by deriving a sub-class and 
modifying that derived class.

● However, as the depth of the inheritance 
hierarchy increases, so does complexity.
○ Complexity must be periodically reviewed 

and restructured.
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Design Traceability

For a design to be adaptable and 
understandable, we must be able to link:
● Components to their data.
● Components to their related components.
● Data to related data.
● Components to their requirements.
● Components to their test cases.
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We Have Learned

● Design is the process of deciding what 
components make up the software, and how 
they connect.
○ The structure of the software.

● A good design allows change while 
protecting unchanged components.

● Coupling and cohesion are central to good 
software design.
○ Always keep these in mind.

49



Next Time

● Midterm Review!
○ Practice midterm on site - try it out.
○ We will go over answers next time.

● Homework 2 due March 3rd
○ Questions?
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