
Software Design
Fundamentals
CSCE 247 - Lecture 12 - 02/27/2019

Today’s Goals

● Define design
● Introduce the design process
● Overview of design criteria

○ What results in a good design?

2

What is Design?

Design is the creative process of transforming a
problem into a solution.
● In our case, transforming a requirements

specification into a detailed description of the
software to be implemented.

● Requirements - what we’re going to build.
● Design - how to build it. A description of the

structure of the solution.

3

What is Design?

Design is the process of going from this:

Software

4

What is Design?

… to this:

…

…
...

…

…
...

…

…
...

…

…
...…

…
...

5

What is Design?

Design is the process of defining the structure
of the software.
● What units make up the codebase?
● How do those units connect to perform the

required functions?

6

General Design Stages

Identify nature of
requirements

Discussions
with Customers

Analyze problem
and derive

solution

High-Level
Requirements

Postulate a
design solution

System
Specification

Validate design
against

specification
Potential
Design

Seek a new
design

Refine designPotential
Design

Implement
solution

1

2

3

Final Design
“Blueprints”

7

Stages of Design

Three repeating stages:
● Problem Understanding

○ Look at the problem from different angles to discover
what needs the design needs to capture.

● Identify Solutions
○ Evaluate possible solutions and choose the most

appropriate in terms of available resources.
● Describe and Document Chosen Solution

○ Use graphical, formal, or other descriptive notations
to describe the components of the design.

8

Stages of Design

Design is performed at multiple levels of
granularity:
● Architecture

○ How is the system structured into subsystems?
○ How do those subsystems work together?

● Unit
○ What units make up these subsystems?
○ How do these units work together?

● Low-Level
○ What algorithms will be employed?
○ What data structures will be used?

9

Design Activities

Architectural
Design

Requirements
Specification

System
architecture
(high-level

breakdown of
system)

Interface
Design

Component
Design Data Design Algorithm

Design

How subsystems
interact with each

other and how
external users
and systems

interact with your
system

A listing of the
individual classes

within your
system

The format of
data that is

produced and
consumed by
your system

Algorithms used
to implement

system
functionality.

10

The Design Process

● Design takes place in overlapping stages.
○ It is artificial to separate them into distinct phases.

Some separation occurs, but these phases take
place largely at the same time.

● In practice - design is an exercise filling in
the missing details.
○ However, don’t forget about the big picture. Keep

looking at all levels of abstraction to make sure
you’re designing the right solution.

11

Basic Design Strategies

12

Design Strategies

UnitA

UnitB ...

UnitD

UnitN

Systems are typically
designed as a hierarchy.
● UnitN provides a service

used by UnitD.
● UnitD provides a service

used by UnitB.
● UnitB provides a service

used by UnitA.

Design strategies dictate how
these units and their
connections are laid out.

13

Centralized Design

● System is designed from a functional
viewpoint: call and return model.
○ Typical in C and non-OO languages.

● Execution is controlled from a central point in
the system.
○ A method is called, the result is passed back to the

controlling location, then that is passed into the next
method.

○ System is designed as a set of independent services
that communicate only with a central master
component.

14

Centralized Design

● The system state is centralized and shared
between the functions operating on that
state.
○ All data is stored by the master component.
○ Each called component receives all data it needs

from the master.

15

Centralized View of a Compiler

Scan
Source

Build
Symbol
Table

Source Program

Tokens

Analysis
Tokens,
Symbols

Generate
Binary

Syntax
Tree

Object
Code

Output
Errors

Error
Indicator

Error
Messages

tokens = scanSource(program);
symbols=buildSymbolTable(tokens);
try{

tree=analysis(tokens,symbols);
generateBinary(tree);

catch(errors){
print errors

}

Main

16

Decentralized Design

● Basis of object-oriented design
● System is designed as a collection of

interacting components.
● System state is decentralized and each

component manages its own data.
● Multiple instances of an component may

exist and communicate.
● How most modern systems are designed.

○ Easier to isolate errors in one component.

17

Decentralized View of a Compiler

Token
Stream

Symbol
Table

Source Program

Add

Syntax
Tree

Abstract
Code

Error
Messages

Scan

Grammar

Get
Check

Build Print

Generate

Object
Code

Generate

18

Design Strategies

UnitA

UnitB ...

UnitD

UnitN

Systems are typically
designed as a hierarchy.
● Higher-level units make

use of many lower-level
units.

● Lower-level units tend to
stand alone.
○ Small, self-contained,

rarely call other
components.

19

Top-Down Design

● In principle, top-down design involves
starting at the uppermost components,
design those, and work down the hierarchy
level-by-level.

● Choose a major system function.
● Decide how to break it into components.
● Decide how to break those components into

smaller subcomponents.

20

Top-Down Design

● In practice, large system design is never
truly top-down.
○ Some branches are designed before others.
○ Designers reuse experience (and sometimes

components) during the design process.
○ Sometimes, the lower levels need to be designed for

the top-level to be completed.

21

Bottom-Up Design

● In principle,bottom-up design involves
starting with standalone components, then
assembling them into a complete system.

● In practice, large system design is never
truly bottom-up.
○ An efficient system cannot be designed

without planning for integration. The
complete picture must be kept in mind.

22

Key Points

● Design is the process of deciding what
components make up the software, and how
they connect.
○ The structure of the software.

● Design activities include architectural design,
interface design, component design, data
design, and algorithm design.
○ But this is a messy process where phases overlap

and activities cycle.

23

What are the criteria for a
“good” design?

24

Design Quality

● No simple answer.
● Design quality is an elusive concept.

○ Depends on organizational priorities, and involves
balancing competing objectives.

● A “good” design may be the most efficient,
the cheapest, the most maintainable, the
most reliable, etc…

25

Design Quality

● A good design results in efficient software.
● Even more important...
● Software will change over time.

○ During implementation, after release.
● A good design allows changes to be made.

○ While also protecting what works from any side
effects of those changes.

26

Design Attributes

● Simplicity
● Modularity

○ Low Coupling
○ High Cohesion
○ Information Hiding
○ Data Encapsulation

● Other “abilities”
○ Adaptability
○ Traceability

27

Expensive to Maximize Attributes

Costs rise exponentially if very high levels of an
attribute are required.

Cost

Efficiency
(Clarity)
(Maintainability)
(etc.) 28

Modularity

A complex system must be broken down into
smaller modules.

Three goals of modularity:
● Decomposability

○ Break the system down into understandable
modules.

● Composability
○ Construct a system from smaller pieces.

● Ease of Understanding
○ The system will change, we must understand it.

29

Modularity Properties

● Cohesion = The degree to which modules
are compatible.

● Coupling = The degree of interdependence
between modules.

We want high cohesion and low coupling.

30

Cohesion

● The degree to which modules are
compatible. A measure of how well a
component “fits together”.

● A component should implement a single
logical entity or feature of the software.

● A high level of cohesion is a desirable
design attribute because changes are
localized to a single, cohesive component.

31

Types of Cohesion

● Logical Cohesion (weak)
○ Components that perform similar functions are

grouped.
● Temporal Cohesion (weak)

○ Components that are activated at the same time are
grouped.

● Procedural Cohesion (weak)
○ The elements in a component make up a single

control sequence.
● Sequential Cohesion (medium)

○ The output for one part of a component is the input
to another part.

32

Levels of Cohesion

● Communicational Cohesion (medium)
○ All of the elements of a component operate on the

same input or produce the same output.
● Functional Cohesion (strong)

○ Each part of a component is necessary for the
execution of a single system feature.

● Object/Data Cohesion (strong)
○ Each operation modifies or allows inspection of

stored object attributes.
○ The class stores data and all operations performed

on that data.

33

Cohesion as a Design Attribute

● Not well-defined.
○ Despite guidelines, cohesion is subjective

and can’t be easily measured.
○ Often very difficult to figure out what is

related.
■ Some code is used by multiple classes.

● Inheriting attributes from super-classes
weakens cohesion.
○ To understand a component, the super-classes as

well as the component class must be examined.

34

Coupling

● The degree of interdependence between
modules. A measure of the strength of the
interconnections between components.
○ Is code from another class called often?
○ How much data is passed during those calls?

● Loose coupling means component changes
are unlikely to affect other components.
○ Loose coupling can be achieved by storing local

data in objects and communicating solely by
passing data through component’s parameters.

35

Tight Coupling

Component A Component B

Component C Component D

Shared
Data

36

Loose Coupling

Component A

A’s Data

Component B

B’s Data

Component C

C’s Data

Component D

D’s Data

37

Food for Thought

● How does an OO language like Java or C++
support low coupling and high cohesion?
○ How can we mess it up?

● How do global variables affect coupling?
● How about complex data structures?

○ … and pointers?
● What does inheritance do to coupling and

cohesion?

38

Coupling and Inheritance

● Object-oriented systems can be loosely
coupled because there is no need for shared
state and objects communicate using
message passing.

● However, an object class is coupled to its
super-classes.
○ Changes made to the attributes or operations in a

super-class propagate to all sub-classes. Such
changes must be carefully controlled.

39

Information Hiding

● Put the complexity inside of a “black box”
○ Hide it from the components that use that “box”.
○ The user does not need to know how the box works,

just what it does.
● Greatly reduces the amount of information

the designer needs to understand at once.
● Examples:

○ Functions, Interfaces, Classes, Libraries
● If used properly, helps ensure loose

coupling.

40

Information Hiding Example

int[] sortAscending(int[] unsorted, int length);

● We do not know what sort routine is used.
● All we know is what the interface is and what

the module accomplishes.
● Allows designers to focus on one part of the

system at a time, without worrying about
other components.

41

Data Encapsulation

● Encapsulation is the principle of building a
barrier around a collection of items.

● Encapsulate the data a module is working
on.
○ Protect the data from unauthorized access.
○ Nobody else can mess with the data.
○ If it gets corrupted, it must have been the fault of this

component.
● Makes the design more robust.

42

Encapsulation Example

Version 2:
class Adder{

private int total;
void addNum(int number){

total += number;
}

int getTotal(){

return total;

}
};
int main()
{
 Adder a;
 a.addNum(10);
 a.addNum(20);
 a.addNum(30);
 cout << "Total " << a.getTotal() <<endl;
 return 0;
}

Version 1:
class Adder{

int total;
void addNum(int number){

total += number;
}

};

int main()
{
 Adder a;

 a.addNum(10);
 a.addNum(20);
 a.addNum(30);

 cout << "Total " << a.total <<endl;
 return 0;
}

43

Understandability

The design should be understandable by the developers -
unambiguous and easy to follow. Related to many
component characteristics:
● Cohesion

○ Can each component be understood on its own?
● Naming

○ Are meaningful component (class, method, variable)
names used?

● Documentation
○ Is the design well-documented? Are decisions justified?

Rationale noted?
● Complexity

○ Are complex algorithms used?
44

Understandability

● High complexity means many relationships
between different entities in the design.
○ Hence, the design is hard to understand.

● Most “measurements” of design quality
measure the complexity.
○ They tell you to avoid high complexity (high number

of relations between components).
○ These metrics tend to be of little use - the number is

irrelevant - instead, be careful to only include
necessary relations.

45

Adaptability

● A design is adaptable if:
○ Its components are loosely coupled.
○ It is well-documented and the documentation is kept

up to date.
○ There is an obvious correspondence between

design levels (interface, components, data, etc).
○ Each component is a self-contained entity (strong

cohesion).
● To adapt a design, it must be possible to

trace links between components so that
change consequences can be analyzed.

46

Adaptability and Inheritance

Inheritance improves adaptability.
● Components may be expanded without

change by deriving a sub-class and
modifying that derived class.

● However, as the depth of the inheritance
hierarchy increases, so does complexity.
○ Complexity must be periodically reviewed

and restructured.

47

Design Traceability

For a design to be adaptable and
understandable, we must be able to link:
● Components to their data.
● Components to their related components.
● Data to related data.
● Components to their requirements.
● Components to their test cases.

48

We Have Learned

● Design is the process of deciding what
components make up the software, and how
they connect.
○ The structure of the software.

● A good design allows change while
protecting unchanged components.

● Coupling and cohesion are central to good
software design.
○ Always keep these in mind.

49

Next Time

● Midterm Review!
○ Practice midterm on site - try it out.
○ We will go over answers next time.

● Homework 2 due March 3rd
○ Questions?

50

