
Software Architecture
CSCE 247 - Lecture 15 - 03/18/2019

In the beginning…

2

Software Was Small

● Both physically…

● And in scope.

3

Software Starts to Grow Up

● Languages like C introduce file linking.
○ Enables organization of code and reuse of code.

● SIMULA-67, Smalltalk introduce objects.
○ Enables organization of code into focused units that

work with other objects to perform larger tasks.
■ Sections of the code “activate” when needed.
■ We can group together related functionality,

ignore unrelated functionality, and find what we
need when making changes.

■ Code can be reused in future projects.

4

Flash forward to the
present day...

5

Under the Hood

● Systems have
millions of lines
of code.

● Divided into
hundreds of
classes.

6

Growing Pains

● No person can understand an entire
million-line codebase.

● Classes organize code, but how can you find
the right clases when there are thousands?

● Results in chaos.
○ Only 16.1% of projects delivered on time and within

budget, with all planned features complete as
specified.

○ 31.1% of projects are cancelled before delivery.
○ Delivered projects may be slow, insecure, missing

features, have duplicate code, go down often, etc.
7

The Concept: “Architect” Software

● The key to delivering robust software?
○ Designing an understandable, organized system.
○ AKA: “taming the complexity”

● Architecting software is the practice of
partitioning a large system into smaller ones.
○ That can be created separately
○ That individually have business value
○ That can be straightforwardly integrated with one

another and with existing systems.

8

Architectural Styles

9

What is Software Architecture?

“The architecture of a software-intensive
system is the structure or structures of the
system, which comprise software elements,
the externally-visible properties of those
elements, and the relationships among them.”
- Carnegie-Mellon Software Engineering Institute (SEI)

10

Architectural Design

● First stage of design.
● Partitions the requirements into

self-contained subsystems.
○ Later, each subsystem will be decomposed into one

or more classes.
● Plan how those subsystems cooperate and

communicate.

11

Static Structures

● The static structures of a system define its
internal design-time elements and their
arrangement.
○ Software elements: modules, classes, packages.
○ Data elements: Database entries/tables, data files.
○ Hardware elements: Servers, CPUs, disks,

networking environment
● The static arrangement of elements defines

associations, relationships, or connectivity
between these elements.

12

Static Structure Arrangement

● For software elements, static relationships
define hierarchy (inheritance) or
dependency (use of variables or methods).

● For data elements, static relationships define
how data items are linked.

● For hardware elements, static relationships
define physical interconnections between
hardware elements.

13

Dynamic Structures

● The dynamic structures of a system define
its runtime elements and their interactions.

● May depict flow of information between
elements
○ A sends messages to B

● May depict flow of control in a particular
scenario.
○ A.action() invokes B.action()

● May depict effect an action has on data.
○ Entry E is created, updated, and destroyed.

14

Architectural Elements

● An architectural element is a fundamental
piece from which a system can be
constructed.

● The scope of an element depends on the
type of system.
○ A single method, a class, a set of related classes (a

subsystem), an imported library can all be elements.
○ “Component”, “module”, and “unit” are often used

interchangeably, but are overloaded terms.

15

Architectural Elements

● An element must
possess key attributes:
○ A clearly defined set of

responsibilities.
○ A clearly defined

boundary.
○ A set of defined

interfaces.
■ Define the services

that the element
provides to other
elements.

16

Externally Visible Behavior

● The externally visible behavior of a system
defines the functional interactions between
the system and its environment.
○ Flow of information in and out of the system.
○ How the system responds to input.
○ The defined interfaces available to the outside world.

● Can be modeled in architecture as a black
box (ignoring any internal information).

● Can also be modeled by including how
internal state responds to external input.

17

Quality Properties

● A quality property is an externally visible,
nonfunctional property.
○ Performance, security, availability, safety,

modifiability, testability, usability, etc.
■ How does the system perform under load?
■ How is information protected from unauthorized

use?
■ How long will it be down on a crash?
■ How easy is it to manage, maintain, and

enhance?
○ Tell us how an observer views the behavior of a

system.
18

Airline Reservation System

Airline Reservation System
● Allows seat booking,

updating, cancellation,
upgrading, transferring.

● Externally visible
behavior: How it
responds to submitted
transactions.

● Quality properties:
average response time,
max throughput,
availability, time required
to repair issues.

19

Option 1: Client/Server Architecture

● Clients communicate
with a central server
(with a database) over a
network.

● Static Structure: Client
programs, broken into
layered elements, a
server, and connections.

● Dynamic Structure:
Request/response
model.

20

Option 2: “Thin Client”
(Client/Server) Architecture

● Clients communicate with a
central server (with a
database) over a network.

● Static Structure: Client
programs only perform
presentation. An application
server performs logic
computations.

● Dynamic Structure:
Request/response model.
Requests submitted to
application server, then
database server.

21

Which Would You Choose?

● Both display same externally behavior, but
may differ in quality properties.
○ First approach is simpler.
○ Second might provide better options for scalability,

or be more secure.
● Must select a candidate architecture that

satisfies all requirements and meets the
proposed quality properties.

● Extent that a model exhibits behaviors and
quality properties must be studied further.

22

Static Structuring

23

Static Structuring

● How we decompose the system into interacting
elements.

● Can be visualized as block diagrams presenting
an overview of the system structure.

Vision
System

Object
ID
System

Arm
Controller

Gripper
Controller

Packaging
Selection
System

Packing
System

Conveyor
Controller

24

Object
Database

Basic Architectural Styles

● Four common styles: layered, shared
repository, client/server, pipe & filter

● The style used affects the performance,
robustness, availability, maintainability, etc.
of the system.

● Complex systems might not follow a single
model - mix and match.

25

Layered Model

● System functionality
organized into layers,
with each layer only
dependent on the
previous layer.

● Allows elements to
change independently.

● Supports incremental
development.

User Interface

Interface Management,
Authentication, Authorization

Core Business Logic
(Functionality)

System Support (OS interface,
Databases, etc.)

26

Copyright Management Example

Web-based Interface

Login, Forms and Query Manager, Print Manager

Search, Document Retrieval, Rights Management, Accounting

Search Index, Support

Databases and Database Handlers

27

Layered Model Characteristics

Disadvantages
● Clean separation

between layers is often
difficult.

● Performance can be a
problem because of
multiple layers of
processing between call
and return.

Advantages
● Allows replacement of

entire layers as long as
interface is maintained.

● When changes occur,
only the adjacent layer is
impacted.

● Redundant features
(authentication) in each
layer can enhance
security and
dependability.

28

The Repository Model

Subsystems often exchange and work with the
same data. This can be done in two ways:
● Each subsystem maintains its own database

and passes data explicitly to other
subsystems.

● Shared data is held in a central repository
and may be accessed by all subsystems.

Repository model is structured around the
latter.

29

IDE Example

Project Information and
Code

Model
Editor

Code
Generator

Java Editor

Python
Editor

Report
Generator

Design
Analyzer

Suggested
Refactorings

30

Repository Model Characteristics

Disadvantages
● Single point of failure.
● Subsystems must agree

on a data model
(inevitably a
compromise).

● Data evolution is difficult
and expensive.

● Communication may be
inefficient.

Advantages
● Efficient way to share

large amounts of data.
● Components can be

independent.
○ May be more secure.

● All data can be
managed consistently
(centralized backup,
security, etc)

31

Client-Server Model

Functionality organized into services,
distributed across a range of components:
● A set of servers that offer services.

○ Print server, file server, code compilation server,
etc..

● Set of clients that call on these services.
○ Through locally-installed front-end.

● Network that allows clients to access these
services.
○ Distributed systems connected across the internet.

32

Film Library Example
Client N

Catalog
Server

Video
Server

Search
Server

HTML
Server

33

...

Client 2

Client 1

Client-Server Model Characteristics

Disadvantages
● Performance is

unpredictable (depends
on system and network).

● Each service is a point
of failure.

● Data exchange may be
inefficient (server ->
client -> server).

● Management problems if
servers owned by
others.

Advantages
● Distributed architecture.

○ Failure in one server
does not impact others.

● Makes effective use of
networked systems and
their CPUs. May allow
cheaper hardware.

● Easy to add new servers
or upgrade existing
servers.

34

Pipe and Filter Model

Input is taken in by one component, processed,
and the output serves as input to the next
component.
● Each processing step transforms data.
● Transformations may execute sequentially or

in parallel.
● Data can be processed as items or batches.
● Similar to Unix command line:

○ cat file.txt | cut -d, -f 2 | sort -n |
uniq -c

35

Customer Invoicing Example

Invoice
Processing

Payment
Identification

Receipt
Generation

Payment
Management

Payment
Reminders

Invoices Payments

Receipts

Reminders

36

Pipe and Filter Characteristics

Disadvantages
● Format for data

communication must be
agreed on. Each
transformation needs to
accept and output the
right format.

● Increases system
overhead.

● Can hurt reuse if code
doesn’t accept right data
structure.

Advantages
● Easy to understand

communication between
components.

● Supports subsystem
reuse.

● Can add features by
adding new subsystems
to the sequence.

37

Dynamic Structuring

38

Control Models

● A model of the control relationships between the
different parts of the system is established.

● During execution, how do the subsystems work together
to respond to requests?
○ Centralized Control:

■ One subsystem has overall responsibility for
control and stops/starts other subsystems.

○ Event-Based Control:
■ Each subsystem can respond to events

generated by other subsystems or the
environment.

39

Centralized Control: Call-Return

A central piece of code (Main) takes responsibility
for managing the execution of other subsystems.

Call-Return Model
● Applicable to

sequential systems.
● Top-down model

where control starts
at the top of a
subroutine and
moves downwards.

Main program

Subsystem 1 Subsystem 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

40

Centralized Control: Manager Model

System
Controller
Process

Sensor
Processes

Actuator
Processes Manager Model

● Applicable to
concurrent systems.

● One process controls
the stopping,
starting, and
coordination of other
system processes.

Sensor
Processes

Sensor
Processes

Actuator
Processes
Actuator

Processes

Control
Processes

Control
Processes
Computation

Processes

User Interface
Process

Fault HandlerFault Handler
Fault Handler

Processes

41

Decentralized Control:
Event-Driven Systems

Control is driven by externally-generated
events where the timing of the event is out of
control of subsystems that process the event.
● Broadcast Model

○ An event is broadcast to all subsystems.
○ Any subsystem that needs to respond to the event

does do.
● Interrupt-Driven Model

○ Events processed by interrupt handler and passed to
proper component for processing.

42

Broadcast Model

An event is broadcast to all subsystems, and
any that can handle it respond.
● Subsystems can register interest in specific

events. When these occur, control is
transferred to the registered subsystems.

● Effective for distributed systems. When one
component fails, others can potentially
respond.
○ However, subsystems don’t know when or if an

event will be handled.
43

Interrupt-Driven Model

Events processed by interrupt handler and
passed to proper component for processing.
● For each type of interrupt, define a handler

that listens for the event and coordinates
response.

● Each interrupt type associated with a
memory location. Handlers watch that
address.

● Used to ensure fast response to an event.
○ However, complex to program and hard to validate.

44

Nuclear Plant Interrupt Example

Interrupt
Array

Temperature
Event Handler

Radiation
Event Handler

Fire Alarm
Event Handler

Fuel Event
Handler

Process 1 Process 2 Process 3 Process 4

45

Example: The ASW

You are designing control software for an aircraft. In such
software, multiple behaviors are based on altitude. The
software interfaces with one of more altimeters, makes
autopilot decisions based on this information, and outputs
status information to a monitor that is viewed by the pilot. If
altitude drops below certain thresholds, the system will
send warnings to that monitor and, if autopilot is engaged,
will attempt to correct the plane’s orientation.
● Perform static structuring. Try to use one or more of

the models covered.
● Perform dynamic structuring. How should control

be routed?

46

ASW Solution

● Perform system structuring. Try to use
one or more of the models covered.

Option 1: Repository Model

Altimeter History
Repository

Monitor
Output

Autopilot
Control

Altimeter
Reading

47

ASW Solution

● Perform system structuring. Try to use
one or more of the models covered.

Option 2: Pipe and Filter

Autopilot
Control

Altimeter
Reading

Altimeter
Response

Monitor
Output

48

ASW Solution

● Perform control modeling. How should
events be handled?

Depends on how you answered the previous
question, but a natural option would be an
Interrupt-Driven Model.
Handlers for new altimeter readings, for error
flags triggered by altimeter processing code.

49

Key Points

● The software architecture must consider
static structure, dynamic structure,
externally-visible behaviors, and quality
properties.

● Architectural models can help organize a
system.
○ Layered, repository, client-server, and pipe and filter

models - also many others.
● Control models include centralized control

and event-driven models.
50

Next Time

● Object-oriented design and class diagrams
● Reading

○ Sommerville, chapter 5, 7
○ Fowler UML, chapter 3

■ (or any resource on class diagrams)

● Homework: Assignment 3 is out!

51

