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Design Patterns

● Strategy Pattern encapsulates interchangeable 
behaviors and uses delegation to decide which 
one to use.

● Observer Pattern allows objects to be notified 
when state changes.

● Visitor Pattern provides a way to traverse a 
collection of objects without exposing its 
implementation.

● Factory Pattern encapsulates object creation 
so that the system doesn’t need to know what 
type of object was created.
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Design Patterns

● Decorator Pattern wraps an object to 
provide new behavior.

● Adapter Pattern wraps an object and 
provides a different interface to it.

● Facade Pattern simplifies the interface of a 
set of classes.

● Command Pattern encapsulates a request 
as an object.
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Today

● Template Method Pattern encapsulates 
pieces of algorithms so that subclasses can 
hook into a computation.

● Iterator Pattern encapsulates the details of 
iterating through collections of items.

● Composite Pattern allows transparent 
treatment of collections and items.

● How we can bring patterns together in a 
complex system.
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Coffee and Tea
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Coffee and Tea (In Code)
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Coffee

prepareRecipe()
boilWater()
brewCoffeeGrinds()
pourInCup()
addSugarAndMilk()

void prepareRecipe(){
boilWater();
brewCoffeeGrinds();
pourInCup();
addSugarAndMilk()

}

Tea

prepareRecipe()
boilWater()
steepTeaBag()
pourInCup()
addLemon()

void prepareRecipe(){
boilWater();
steepTeaBag();
pourInCup();
addLemon()

}



Coffee and Tea (In Code) - Take 2
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Coffee

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Tea

prepareRecipe()
steepTeaBag()
addLemon()

CaffeineBeverage

prepareRecipe()
boilWater()
pourInCup()



Back to the Recipes
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Algorithm
1) Boil some water.
2) Use hot water to extract the beverage 

from a solid form.
3) Pour the beverage into a cup.
4) Add appropriate condiments to the 

beverage.

● Steps 1 and 3 are already 
abstracted into the base class.

● Steps 2 and 4 are not 
abstracted, but are basically the 
same concept applied to different 
beverages.



Abstracting prepareRecipe()

● Coffee uses brewCoffeeGrinds() and 
addSugarAndMilk(), Tea uses 
steepTeaBag() and addLemon(). 
○ But steeping and brewing aren’t all that different.

■ Rename both to brew().
○ Adding sugar is just like adding lemon.

■ Rename both to addCondiments().
● void prepareRecipe() {

boilWater();
brew();
pourInCup();
addCondiments();

}
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Our Redesigned Code
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Coffee

brew()
addCondiments()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()



What Have We Done?

● We’ve recognized that two recipes are 
essentially the same, although some of the 
steps require different implementations.

● We have generalized the recipe and placed 
it in a base class.
○ CaffeineBeverage knows and controls the steps of 

the recipe. It performs common steps itself.
■ (encapsulating what does not change...)

○ It relies on subclasses to implement unique steps.
■ (... from what does change)
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The Template Method Pattern

● prepareRecipe() is our template method.
○ It is a method.
○ It serves as a template for an algorithm.

● In the template, each step of the algorithm is 
represented by a method.

● Some methods are handled by the base 
class, others are handled by the subclasses.
○ The methods that need to be supplied by a subclass 

are declared abstract.
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What Does the Template Method Get Us?

Original Implementation
● Coffee and Tea control the 

algorithm.
● Code is duplicated across Coffee 

and Tea.
● Changes to the algorithm require 

making changes to the 
subclasses.

● Classes are organized in a 
structure that requires more work 
to add a new beverage.

● Knowledge of the algorithm and 
how to implement it is distributed 
over multiple clases.

13

Template Method:
● CaffeineBeverage class controls 

and protects the algorithm.
● CaffeineBeverage class 

implements common code.
● The algorithm lives in one place 

and code changes only need to 
be made there.

● The Template Method allows 
new beverages to be added. 
They only need to implement 
specialized methods.

● The CaffeineBeverage class 
contains all knowlege about the 
algorithm and relies on 
subclasses to provide 
implementations.



The Template Method Pattern

● The Template Method Pattern defines the 
skeleton of an algorithm in a method, 
deferring some steps to subclasses.

● Template Method lets subclasses redefine 
certain steps of an algorithm without 
changing the algorithm’s structure.

● A template is a method that defines an 
algorithm as a set of steps. 
○ Abstract steps are implemented by subclasses. 
○ Ensures the algorithm’s structure stays unchanged.
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Template Method Pattern
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Looking Inside the Code
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Adding Hooks

● The parent class can 
define concrete methods 
that are empty or have a 
default implementation 
(called hooks).
○ Subclasses can override 

these, but do not have to.
○ Gives subclasses the ability 

to “hook into” the algorithm if 
they wish.
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Coffee

brew()
addCondiments()
wantsCondiments()
getUserInput()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()
wantsCondiments()

void prepareRecipe(){
boilWater();
brew()
pourInCup();
if(wantsCondiments()){ 

addCondiments();
}

}
boolean wantsCondiments(){

return true;
}

boolean wantsCondiments(){
String answer 

= getUserInput();
if answer.equals(“yes”)

return true;
else

return false;
}



The Hollywood Principle

● Don’t call us, we’ll call you.
● Prevents “dependency rot”.

○ When high-level components depend on low-level 
components, and those components depend on 
high-level components, etc, etc.

○ When you have dependency rot, it is hard to 
understand how a system is designed.

● The Hollywood Principle allows low-level 
components to hook into a system, but the 
high-level components decide when and 
how they are needed.
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The Diner and Pancake House Merge

● The owners of the diner and pancake house 
have agreed on an implementation for the 
menu items…

● But they can’t agree on how to implement 
the menus themselves. 
○ Both have invested time in writing their own code.
○ Pancake house uses an ArrayList to hold items.
○ Diner uses an Array. 
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Menu Implementations

● Pancake House
○ Items stored in an ArrayList. 

■ Allows easy menu 
expansion.

○ Each item is added using 
addItem(name, 
description, 
vegetarian, price)
■ Creates a new instance 

of MenuItem, passing in 
each argument.

○ getMenuItems() returns 
the list of items.

○ There are several other 
methods that depend on the 
ArrayList implementation.
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● Diner
○ Items are stored in an Array.

■ Allows control over the 
maximum size of the 
menu.

○ addItem(...) creates a 
MenuItem and checks 
whether the array is full. 

○ getMenuItems() returns 
the array.

○ There are also several 
methods that depend on 
Array implementation.



Why is this a Problem?

● Waitress class should be able to print the full, breakfast, 
lunch, and vegetarian menu, and check whether an item 
is vegetarian.

● How would we implement this?
○ getMenuItems() returns different data types. 
○ If we iterate over both menus, we need two loops. 
○ Every method requires custom code for both 

implementations. If we add another restaurant, we 
need three loops.

● Implementation will be hard to evolve.
○ If both implemented the same interface, we could 

minimize concrete references and only use one loop 
to iterate.
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Encapsulating the Iteration

● What changes here is how we iterate over 
different collections of objects.
○ To iterate over an ArrayList, we use size() and 

get() methods on the collection.
○ Over the Array, we use .length and array[i].

● Create an “Iterator” that encapsulates how 
we walk through a collection:
Iterator iterator = breakfastMenu.createIterator();

// Or… lunchMenu.createIterator();

while (iterator.hasNext()) {

MenuItem menuItem = (MenuItem)iterator.next();

}
22



The Iterator Pattern

● Relies on an interface 
called Iterator.
○ hasNext() tells us if there are 

more elements.
○ next() returns the next item.

● Implement concrete 
Iterators for any type of 
collection that we can 
make use of.
○ Each contains concrete details 

for ArrayList, Array, etc.
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<<interface>>
Iterator

hasNext()
next()

DinerMenuIterator

hasNext()
next()

BreakfastMenu
Iterator

hasNext()
next()



Iterators for the Restaurants

● DinerMenuIterator
○ Maintains an index for the 

current array position. 
○ Constructor takes in the 

array and sets position to 0.
○ next() gets the item at the 

current position, increments 
position, and returns the 
item.

○ hasNext() checks to see if 
the position is at the end, or 
if the next element is null 
(the menu isn’t full, but 
we’ve seen everything).

● The DinerMenu class must add a 
method createIterator() that 
returns a new Iterator.
○ The object returned is an 

instance of DinerMenu 
Iterator, but the return type 
is the generic Iterator. 

○ The client does not need to 
know what type of Iterator it 
is working with - all have the 
same methods.

● We can get rid of 
getMenuItems(). The Iterator 
replaces it in a generic manner.

● The Waiter class can be 
rewritten to remove redundant 
loops.
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Before and After

● Before Iterators
○ Menus are not well 

encapsulated. One uses 
ArrayList and the other uses 
Array.

○ We need two loops to iterate 
over all MenuItems.

○ The Waitress is bound to 
concrete classes 
MenuItem[] and ArrayList.

○ The Waiter is bound to two 
concrete Menu classes, with 
near-identical interfaces.

● After Iterators
○ Menu implementations are 

encapsulated. The Waitress 
does not know how Menus 
hold their collections.

○ We need one loop that 
polymorphically handles any 
collection of items.

○ The Waitress now uses an 
interface (Iterator).

○ We can define a Menu 
interface that has method 
createIterator().
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Iterator Pattern Defined

● The Iterator Pattern provides a way to 
access the elements of an aggregate object 
sequentially without exposing its underlying 
representation.

● Once you have a uniform way to access 
elements of all aggregate objects, your code 
will work with any of these aggregates.

● Iterator Pattern takes the responsibility of 
traversing collections from the collection to 
the Iterator itself.
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Iterator Pattern
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The Principle of Single Responsibility

● Why do we not let collections manage their 
own iteration?
○ Why is it bad to increase the number of methods?

● This would give the collection two reasons to 
change if we were to evolve the class.
○ A class should have only one reason to change.
○ Protect what changes from what might not (or from 

other aspects that change).
○ Assign each responsibility to one class alone.

■ This is hard to ensure. Look for signals that a class is 
changing in multiple ways as the system grows.
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Adding a Dessert Submenu
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What Do We Need?
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The Composite Pattern

● The Composite Pattern allows you to 
compose objects into tree structures to 
represent hierarchies.

● Composite lets clients treat individual objects 
and compositions of objects uniformly.
○ Elements with child elements are called nodes.
○ Elements without children are called leaves.
○ Menus are nodes, MenuItems are leaves.

■ Menus are compositions of other Menus and MenuItems.
○ The Composite Pattern allows us to write code that 

can apply the same operation (i.e., printing) over the 
entire Menu structure.
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The Composite Pattern
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Designing Menus with Composite
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Implementing MenuComponent
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Implementing Menu Printing
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A Design Trade-Off

● The Composite Pattern violates the Single 
Responsibility principle.
○ Composite Pattern manages a hierarchy and 

performs operations on items in the hierarchy.
● Composite Pattern trades safety for 

transparency.
○ A client can treat composite and leaf nodes 

uniformly. The type of node (composite or leaf) is 
transparent to the client.

○ We lose safety because the client might try to apply 
inappropriate operations to an element.

36



Bringing Back the Ducks

● First, we 
need a 
Quackable 
interface.

● Now, some 
Ducks that 
implement 
Quackable
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… And Our Duck Simulator

38



Challenge 1: Geese!

● Geese are not Ducks, but we can make 
them Ducks using the Adapter Pattern
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Integrating Geese into the Simulator
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Challenge 2: Counting Quacks
● A biologist wants us 

to count the 
quacks, for some 
reason… 

● We can create a 
Decorator that 
gives Ducks a new 
behavior (counting) 
by wrapping a Duck 
with a decorator 
object. 
○ We do not 

need to 
change Duck 
behavior at all.
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Integrating Counting into the Sim
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Challenge 3: Easy Duck Creation

● We might find that too many Ducks are 
being created without the decorator.
○ You have to remember to decorate objects to get 

decorated behavior.
● We should take Duck creation and localize it 

to one code location.
○ Take Duck creation and decorating and encapsulate 

it in one spot.
● We can create a Duck Factory.
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Duck Factory
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Decorated Duck Factory
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Integrating the Factory

46



Challenge 4: Managing a Flock

● This is not very manageable. 

● Why are we managing ducks individually?
○ We need a way to talk about collections of Ducks 

(flocks?) or subcollections of Ducks (to please our 
biologist).

○ The Composite pattern allows us to treat a group as 
we would an individual.
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Creating a Flock
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(Also - spot the Iterator)



Integrating the Flock
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Wrapping Up

● Template Method Pattern encapsulates 
pieces of algorithms so that subclasses can 
hook into a computation.

● Iterator Pattern encapsulates the details of 
iterating through collections of items.

● Composite Pattern allows transparent 
treatment of collections and items.
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Next Time

● From Design to Implementation 
○ Modeling dynamic behavior of objects.
○ UML sequence diagrams
○ Implementation practices
○ Reading

■ Sommerville, chapter 5, 7
■ Fowler, chapter 4

● Homework 3
○ Due April 7
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