
Design Patterns 
(Part 3)
CSCE 247 - Lecture 20 - 04/03/2019



Design Patterns

● Strategy Pattern encapsulates interchangeable 
behaviors and uses delegation to decide which 
one to use.

● Observer Pattern allows objects to be notified 
when state changes.

● Visitor Pattern provides a way to traverse a 
collection of objects without exposing its 
implementation.

● Factory Pattern encapsulates object creation 
so that the system doesn’t need to know what 
type of object was created.

2



Design Patterns

● Decorator Pattern wraps an object to 
provide new behavior.

● Adapter Pattern wraps an object and 
provides a different interface to it.

● Facade Pattern simplifies the interface of a 
set of classes.

● Command Pattern encapsulates a request 
as an object.

3



Today

● Template Method Pattern encapsulates 
pieces of algorithms so that subclasses can 
hook into a computation.

● Iterator Pattern encapsulates the details of 
iterating through collections of items.

● Composite Pattern allows transparent 
treatment of collections and items.

● How we can bring patterns together in a 
complex system.

4



Coffee and Tea

5



Coffee and Tea (In Code)

6

Coffee

prepareRecipe()
boilWater()
brewCoffeeGrinds()
pourInCup()
addSugarAndMilk()

void prepareRecipe(){
boilWater();
brewCoffeeGrinds();
pourInCup();
addSugarAndMilk()

}

Tea

prepareRecipe()
boilWater()
steepTeaBag()
pourInCup()
addLemon()

void prepareRecipe(){
boilWater();
steepTeaBag();
pourInCup();
addLemon()

}



Coffee and Tea (In Code) - Take 2

7

Coffee

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Tea

prepareRecipe()
steepTeaBag()
addLemon()

CaffeineBeverage

prepareRecipe()
boilWater()
pourInCup()



Back to the Recipes

8

Algorithm
1) Boil some water.
2) Use hot water to extract the beverage 

from a solid form.
3) Pour the beverage into a cup.
4) Add appropriate condiments to the 

beverage.

● Steps 1 and 3 are already 
abstracted into the base class.

● Steps 2 and 4 are not 
abstracted, but are basically the 
same concept applied to different 
beverages.



Abstracting prepareRecipe()

● Coffee uses brewCoffeeGrinds() and 
addSugarAndMilk(), Tea uses 
steepTeaBag() and addLemon(). 
○ But steeping and brewing aren’t all that different.

■ Rename both to brew().
○ Adding sugar is just like adding lemon.

■ Rename both to addCondiments().
● void prepareRecipe() {

boilWater();
brew();
pourInCup();
addCondiments();

}

9



Our Redesigned Code

10

Coffee

brew()
addCondiments()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()



What Have We Done?

● We’ve recognized that two recipes are 
essentially the same, although some of the 
steps require different implementations.

● We have generalized the recipe and placed 
it in a base class.
○ CaffeineBeverage knows and controls the steps of 

the recipe. It performs common steps itself.
■ (encapsulating what does not change...)

○ It relies on subclasses to implement unique steps.
■ (... from what does change)

11



The Template Method Pattern

● prepareRecipe() is our template method.
○ It is a method.
○ It serves as a template for an algorithm.

● In the template, each step of the algorithm is 
represented by a method.

● Some methods are handled by the base 
class, others are handled by the subclasses.
○ The methods that need to be supplied by a subclass 

are declared abstract.

12



What Does the Template Method Get Us?

Original Implementation
● Coffee and Tea control the 

algorithm.
● Code is duplicated across Coffee 

and Tea.
● Changes to the algorithm require 

making changes to the 
subclasses.

● Classes are organized in a 
structure that requires more work 
to add a new beverage.

● Knowledge of the algorithm and 
how to implement it is distributed 
over multiple clases.

13

Template Method:
● CaffeineBeverage class controls 

and protects the algorithm.
● CaffeineBeverage class 

implements common code.
● The algorithm lives in one place 

and code changes only need to 
be made there.

● The Template Method allows 
new beverages to be added. 
They only need to implement 
specialized methods.

● The CaffeineBeverage class 
contains all knowlege about the 
algorithm and relies on 
subclasses to provide 
implementations.



The Template Method Pattern

● The Template Method Pattern defines the 
skeleton of an algorithm in a method, 
deferring some steps to subclasses.

● Template Method lets subclasses redefine 
certain steps of an algorithm without 
changing the algorithm’s structure.

● A template is a method that defines an 
algorithm as a set of steps. 
○ Abstract steps are implemented by subclasses. 
○ Ensures the algorithm’s structure stays unchanged.

14



Template Method Pattern

15



Looking Inside the Code

16



Adding Hooks

● The parent class can 
define concrete methods 
that are empty or have a 
default implementation 
(called hooks).
○ Subclasses can override 

these, but do not have to.
○ Gives subclasses the ability 

to “hook into” the algorithm if 
they wish.

17

Coffee

brew()
addCondiments()
wantsCondiments()
getUserInput()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()
wantsCondiments()

void prepareRecipe(){
boilWater();
brew()
pourInCup();
if(wantsCondiments()){ 

addCondiments();
}

}
boolean wantsCondiments(){

return true;
}

boolean wantsCondiments(){
String answer 

= getUserInput();
if answer.equals(“yes”)

return true;
else

return false;
}



The Hollywood Principle

● Don’t call us, we’ll call you.
● Prevents “dependency rot”.

○ When high-level components depend on low-level 
components, and those components depend on 
high-level components, etc, etc.

○ When you have dependency rot, it is hard to 
understand how a system is designed.

● The Hollywood Principle allows low-level 
components to hook into a system, but the 
high-level components decide when and 
how they are needed.

18



The Diner and Pancake House Merge

● The owners of the diner and pancake house 
have agreed on an implementation for the 
menu items…

● But they can’t agree on how to implement 
the menus themselves. 
○ Both have invested time in writing their own code.
○ Pancake house uses an ArrayList to hold items.
○ Diner uses an Array. 

19



Menu Implementations

● Pancake House
○ Items stored in an ArrayList. 

■ Allows easy menu 
expansion.

○ Each item is added using 
addItem(name, 
description, 
vegetarian, price)
■ Creates a new instance 

of MenuItem, passing in 
each argument.

○ getMenuItems() returns 
the list of items.

○ There are several other 
methods that depend on the 
ArrayList implementation.

20

● Diner
○ Items are stored in an Array.

■ Allows control over the 
maximum size of the 
menu.

○ addItem(...) creates a 
MenuItem and checks 
whether the array is full. 

○ getMenuItems() returns 
the array.

○ There are also several 
methods that depend on 
Array implementation.



Why is this a Problem?

● Waitress class should be able to print the full, breakfast, 
lunch, and vegetarian menu, and check whether an item 
is vegetarian.

● How would we implement this?
○ getMenuItems() returns different data types. 
○ If we iterate over both menus, we need two loops. 
○ Every method requires custom code for both 

implementations. If we add another restaurant, we 
need three loops.

● Implementation will be hard to evolve.
○ If both implemented the same interface, we could 

minimize concrete references and only use one loop 
to iterate.

21



Encapsulating the Iteration

● What changes here is how we iterate over 
different collections of objects.
○ To iterate over an ArrayList, we use size() and 

get() methods on the collection.
○ Over the Array, we use .length and array[i].

● Create an “Iterator” that encapsulates how 
we walk through a collection:
Iterator iterator = breakfastMenu.createIterator();

// Or… lunchMenu.createIterator();

while (iterator.hasNext()) {

MenuItem menuItem = (MenuItem)iterator.next();

}
22



The Iterator Pattern

● Relies on an interface 
called Iterator.
○ hasNext() tells us if there are 

more elements.
○ next() returns the next item.

● Implement concrete 
Iterators for any type of 
collection that we can 
make use of.
○ Each contains concrete details 

for ArrayList, Array, etc.
23

<<interface>>
Iterator

hasNext()
next()

DinerMenuIterator

hasNext()
next()

BreakfastMenu
Iterator

hasNext()
next()



Iterators for the Restaurants

● DinerMenuIterator
○ Maintains an index for the 

current array position. 
○ Constructor takes in the 

array and sets position to 0.
○ next() gets the item at the 

current position, increments 
position, and returns the 
item.

○ hasNext() checks to see if 
the position is at the end, or 
if the next element is null 
(the menu isn’t full, but 
we’ve seen everything).

● The DinerMenu class must add a 
method createIterator() that 
returns a new Iterator.
○ The object returned is an 

instance of DinerMenu 
Iterator, but the return type 
is the generic Iterator. 

○ The client does not need to 
know what type of Iterator it 
is working with - all have the 
same methods.

● We can get rid of 
getMenuItems(). The Iterator 
replaces it in a generic manner.

● The Waiter class can be 
rewritten to remove redundant 
loops.

24



Before and After

● Before Iterators
○ Menus are not well 

encapsulated. One uses 
ArrayList and the other uses 
Array.

○ We need two loops to iterate 
over all MenuItems.

○ The Waitress is bound to 
concrete classes 
MenuItem[] and ArrayList.

○ The Waiter is bound to two 
concrete Menu classes, with 
near-identical interfaces.

● After Iterators
○ Menu implementations are 

encapsulated. The Waitress 
does not know how Menus 
hold their collections.

○ We need one loop that 
polymorphically handles any 
collection of items.

○ The Waitress now uses an 
interface (Iterator).

○ We can define a Menu 
interface that has method 
createIterator().

25



Iterator Pattern Defined

● The Iterator Pattern provides a way to 
access the elements of an aggregate object 
sequentially without exposing its underlying 
representation.

● Once you have a uniform way to access 
elements of all aggregate objects, your code 
will work with any of these aggregates.

● Iterator Pattern takes the responsibility of 
traversing collections from the collection to 
the Iterator itself.

26



Iterator Pattern

27



The Principle of Single Responsibility

● Why do we not let collections manage their 
own iteration?
○ Why is it bad to increase the number of methods?

● This would give the collection two reasons to 
change if we were to evolve the class.
○ A class should have only one reason to change.
○ Protect what changes from what might not (or from 

other aspects that change).
○ Assign each responsibility to one class alone.

■ This is hard to ensure. Look for signals that a class is 
changing in multiple ways as the system grows.

28



Adding a Dessert Submenu

29



What Do We Need?

30



The Composite Pattern

● The Composite Pattern allows you to 
compose objects into tree structures to 
represent hierarchies.

● Composite lets clients treat individual objects 
and compositions of objects uniformly.
○ Elements with child elements are called nodes.
○ Elements without children are called leaves.
○ Menus are nodes, MenuItems are leaves.

■ Menus are compositions of other Menus and MenuItems.
○ The Composite Pattern allows us to write code that 

can apply the same operation (i.e., printing) over the 
entire Menu structure.

31



The Composite Pattern

32



Designing Menus with Composite

33



Implementing MenuComponent

34



Implementing Menu Printing

35



A Design Trade-Off

● The Composite Pattern violates the Single 
Responsibility principle.
○ Composite Pattern manages a hierarchy and 

performs operations on items in the hierarchy.
● Composite Pattern trades safety for 

transparency.
○ A client can treat composite and leaf nodes 

uniformly. The type of node (composite or leaf) is 
transparent to the client.

○ We lose safety because the client might try to apply 
inappropriate operations to an element.

36



Bringing Back the Ducks

● First, we 
need a 
Quackable 
interface.

● Now, some 
Ducks that 
implement 
Quackable

37



… And Our Duck Simulator

38



Challenge 1: Geese!

● Geese are not Ducks, but we can make 
them Ducks using the Adapter Pattern

39



Integrating Geese into the Simulator

40



Challenge 2: Counting Quacks
● A biologist wants us 

to count the 
quacks, for some 
reason… 

● We can create a 
Decorator that 
gives Ducks a new 
behavior (counting) 
by wrapping a Duck 
with a decorator 
object. 
○ We do not 

need to 
change Duck 
behavior at all.

41



Integrating Counting into the Sim

42



Challenge 3: Easy Duck Creation

● We might find that too many Ducks are 
being created without the decorator.
○ You have to remember to decorate objects to get 

decorated behavior.
● We should take Duck creation and localize it 

to one code location.
○ Take Duck creation and decorating and encapsulate 

it in one spot.
● We can create a Duck Factory.

43



Duck Factory

44



Decorated Duck Factory

45



Integrating the Factory

46



Challenge 4: Managing a Flock

● This is not very manageable. 

● Why are we managing ducks individually?
○ We need a way to talk about collections of Ducks 

(flocks?) or subcollections of Ducks (to please our 
biologist).

○ The Composite pattern allows us to treat a group as 
we would an individual.

47



Creating a Flock

48

(Also - spot the Iterator)



Integrating the Flock

49



Wrapping Up

● Template Method Pattern encapsulates 
pieces of algorithms so that subclasses can 
hook into a computation.

● Iterator Pattern encapsulates the details of 
iterating through collections of items.

● Composite Pattern allows transparent 
treatment of collections and items.

50



Next Time

● From Design to Implementation 
○ Modeling dynamic behavior of objects.
○ UML sequence diagrams
○ Implementation practices
○ Reading

■ Sommerville, chapter 5, 7
■ Fowler, chapter 4

● Homework 3
○ Due April 7

51


