Design Patterns
(Part 3)

CSCE 247 - Lecture 20 - 04/03/2019

Design Patterns

e Strategy Pattern encapsulates interchangeable
behaviors and uses delegation to decide which
one to use.

e Observer Pattern allows objects to be notified
when state changes.

e Visitor Pattern provides a way to traverse a
collection of objects without exposing its
implementation.

e Factory Pattern encapsulates object creation
so that the system doesn’t need to know what
type of object was created.

Design Patterns

e Decorator Pattern wraps an object to
provide new behavior.

e Adapter Pattern wraps an object and
provides a different interface to it.

e Facade Pattern simplifies the interface of a
set of classes.

e Command Pattern encapsulates a request
as an object.

Today

e Template Method Pattern encapsulates
pieces of algorithms so that subclasses can
hook into a computation.

e [terator Pattern encapsulates the details of
iterating through collections of items.

e Composite Pattern allows transparent
treatment of collections and items.

e How we can bring patterns together in a
complex system.

Coffee and Tea

The vetipe for
ok fee looks 3 lot
like the vetipe for
{Ca; doCShjt \‘E?

Coffee and Tea (In Code)

Coffee Tea
prepareRecipe() prepareRecipe()
boilWater() S boilWater() L
brewCoffeeGrinds() *_ steepTeaBag() o
pourlnCup() ‘N pourlnCup() \\
addSugarAndMilk() AN addLemon() AR
\\ \\
\ \
\ \
\\ \\
void prepareRecipe(} void prepareRecipe()X
boilWater(); boilWater();
brewCoffeeGrinds(); steepTeaBag();
pourlnCup(); pourlnCup();
addSugarAndMilk() addLemon()
} ¥
y y

Coffee and Tea (In Code) - Take 2

CaffeineBeverage

prepareRecipe()

boilWater()

pourlinCup()
Coffee Tea
prepareRecipe() prepareRecipe()
brewCoffeeGrinds() steepTeaBag()
addSugarAndMilk() addLemon()

Back to the Recipes

a
e
precisel when B Algorithm
Coffee Recipe 1) Boil some water.
S*/r‘a‘ﬁ//"’ 2) Use hot water to extract the beverage
1) Boid S0 CFsq poilind e from a solid form.
(2) Bre"; cc‘; cfee i 9‘;1"‘ 3) Pour the beverage into a cup.
(&’) if,‘; gugar and ™ 4) Add appropriate condiments to the
beverage.
Sorhuzz Teo Re<E
(1) Boil SO v;t:iili“g wALe= e Steps 1 and 3 are already
(2) S;‘frptea in CUP abstracted into the base class.
‘(34)) Add 1emoP e Steps 2 and 4 are not
abstracted, but are basically the
4 snoutd be KeP® same concept applied to different
oo trade secet® beverages.

Abstracting prepareRecipe()

e Coffee uses brewCoffeeGrinds() and
addSugarAndMilk(), Tea uses

steepTeaBag() and addLemon().

o But steeping and brewing aren’t all that different.
m Rename both to brew().

o Adding sugar is just like adding lemon.

m Rename both to addCondiments().
e void prepareRecipe() {

boilWater();

brew();

pourInCup();

addCondiments();

}

public abstract class CaffeineBeverage {

Our Redesigned Code

CatfeneBeverage is abstract, just

f like in the tlass desion Now, the same VrcparcRcc‘\‘vc() method will \?c n(‘;c.d
to v:\akc both Tea and Cotlee prepareRetipel) s

detlaved Linal betause we don't want our subtlasses

. . thange the
final void prepareRecipe() { @—— }obe able Lo override £his method and 9
We've genevalized ste

boilWater(); rcc'\?e! '
brew() ; he chﬂ'aSC and addCond\mch{s().
pourInCup();

addCondiments () ;
}

;_/—\ Betause Coffee and Tea handle these methods
in diffevent ways) Jc,hcy'rc going +o have to
be detlaved as abstract Let the subtlasses

abstract void brew();

abstract void addCondiments () ;

worry about that stuf £l
void boilWater () {
System.out.println(“Boiling water”);
} Td Remember, we moved these into
the CaF«CcincBevcragc tlass (back
void pourInCup() { in owr tlass diagram).

System.out.println (“Pouring into cup”);

}

ps 2 and & to brew()

CaffeineBeverage
prepareRecipe()
brew()
addCondiments()
boilWater()
pourlnCup()
Tea
brew()
addCondiments()
Coffee
brew()
addCondiments()

10

What Have We Done?

e \We've recognized that two recipes are
essentially the same, although some of the
steps require different implementations.

e \We have generalized the recipe and placed

It In a base class.

o CaffeineBeverage knows and controls the steps of
the recipe. It performs common steps itself.
m (encapsulating what does not change...)

o It relies on subclasses to implement unique steps.
m (... from what does change)

11

The Template Method Pattern

e prepareRecipe() is our template method.

o Itis a method.
o It serves as a template for an algorithm.

e [n the template, each step of the algorithm is
represented by a method.
e Some methods are handled by the base

class, others are handled by the subclasses.
o The methods that need to be supplied by a subclass
are declared abstract.

12

What Does the Template Method Get Us?

Original Implementation

e Coffee and Tea control the
algorithm.

e Code is duplicated across Coffee
and Tea.

e Changes to the algorithm require
making changes to the
subclasses.

e Classes are organized in a
structure that requires more work
to add a new beverage.

e Knowledge of the algorithm and
how to implement it is distributed
over multiple clases.

Template Method:

CaffeineBeverage class controls
and protects the algorithm.
CaffeineBeverage class
implements common code.

The algorithm lives in one place
and code changes only need to
be made there.

The Template Method allows
new beverages to be added.
They only need to implement
specialized methods.

The CaffeineBeverage class
contains all knowlege about the
algorithm and relies on
subclasses to provide

implementations. 13

The Template Method Pattern

e The Template Method Pattern defines the
skeleton of an algorithm in a method,
deferring some steps to subclasses.

e Template Method lets subclasses redefine
certain steps of an algorithm without
changing the algorithm’s structure.

e A template is a method that defines an

algorithm as a set of steps.

o Abstract steps are implemented by subclasses.
o Ensures the algorithm’s structure stays unchanged.

14

Template Method Pattern

The template method makes use of the
primitiveOperations to implement an

algorithm. [t is decoupled from the actual
implementation of these oPcrafions.

The AbsbractClass /\/

Lonta'ms ‘H‘\C {',CM?la'tC
method.

..and abstraet versions
of the o?cra{:ions used /”"'JD
in the template method.

e wany ﬁ

There ™2 eath
Contre C\::;: A\ se‘\}’(.;f
\emen ™ b
o:Cv akiors ¥ !

e glate method

C(\U\Y Cd

2

AbstractClass
primitiveOperation1();
templateMethod() primitiveOperation2();
primitiveOperation1()

primitive Operation2()

ConcreteClass
primitiveOperation1() m
primitiveOperation2() The Condvc{:caass imﬂcmcn{:s

the abstract o?cra‘l:ions,
whith are talled when the
‘Etm?la‘l',cMc{hodo needs them.

15

Looking Inside the Code

Heve we have owr abstraet elass; it

is detlared abstract and meant to

be subelassed by elasses that yv.rovidc

implementations of the operations. b e
deelaved Final to prevent subclasses
from veworking the sequente
steps in the a\gori{‘)\m

abstract class AbstractClass {

RRGL et/ tenpUaEskatioat)!] The template method
primitiveOperationl () ; defi
primitiveOperation2() ; 5 / ines the sequence of

stc S,
concreteOperation() ; Ps) €ach vepresented

} by a method.

abstract void primitiveOperationl () ;

In this example, two of
the primitive operations
| must be implemented b‘/

| 7 tontrete subelasses.

We also have a tontrete operation defined
in the abstract ¢lass. More about these
kinds of methods in a bit.. 16

abstract void primitiveOperation2() ;

void concreteOperation() {
// implementation here

Adding Hooks

e The parent class can
define concrete methods
that are empty or have a
default implementation

(called hooks).
o Subclasses can override
these, but do not have to.
o Gives subclasses the ability
to “hook into” the algorithm if
they wish.

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourlnCup()
wantsCondiments()

void prepareRecipe(){
boilWater();
brew()
pourlnCup();
if(wantsCondiments()){

addCondiments();

}

}

boolean wantsCondiments(){

Tea

brew()
addCondiments()

\

Coffee

brew()
addCondiments()
wantsCondiments()
getUserlnput()

/
Z

return true;
}

y

boolean wantsCondiments(){
String answer
= getUserlnput();
if answer.equals(“yes”)
return true;
else
return false;

4

17

The Hollywood Principle

e Don't call us, we'll call you.

e Prevents “"dependency rot”.

o When high-level components depend on low-level
components, and those components depend on
high-level components, etc, etc.

o When you have dependency rot, it is hard to
understand how a system is designed.

e The Hollywood Principle allows low-level
components to hook into a system, but the

high-level components decide when and
how they are needed.

18

The Diner and Pancake House Merge

e The owners of the diner and pancake house

have agreed on an implementation for the
menu items...

e But they can’'t agree on how to implement

the menus themselves.

o Both have invested time in writing their own code.
o Pancake house uses an ArrayList to hold items.
o Diner uses an Array.

19

Menu Implementations

e Pancake House e Diner
o Items stored in an ArrayList. o Items are stored in an Array.
m Allows easy menu m Allows control over the
expansion. maximum size of the
o Each item is added using menu.
addItem(name, o addItem(...) createsa
description, Menultem and checks
vegetarian, price) whether the array is full.
m Creates a new instance o getMenultems() returns
of Menultem, passing in the array.
each argument. o There are also several
o getMenultems() returns methods that depend on
the list of items. Array implementation.

o There are several other
methods that depend on the
ArrayList implementation.

20

Why is this a Problem?

e \Waitress class should be able to print the full, breakfast,

lunch, and vegetarian menu, and check whether an item
IS vegetarian.

e How would we implement this?
o getMenultems() returns different data types.
o |f we iterate over both menus, we need two loops.
o Every method requires custom code for both

implementations. If we add another restaurant, we
need three loops.

e |mplementation will be hard to evolve.

o If both implemented the same interface, we could

minimize concrete references and only use one loop
to iterate.

21

Encapsulating the Iteration

What changes here is how we iterate over

different collections of objects.

o To iterate over an ArrayList, we use size() and
get () methods on the collection.

o Over the Array, we use .length and array[1i].

Create an “lterator” that encapsulates how
we walk through a collection:

Iterator iterator = breakfastMenu.createlterator();
// Or... lunchMenu.createlterator();
while (iterator.hasNext()) {

Menultem menultem = (Menultem)iterator.next();

}

22

The lterator Pattern

e Relies on an interface

called lterator.

o hasNext() tells us if there are
more elements.

o next() returns the next item.

e Implement concrete
lterators for any type of
collection that we can

make use of.
o Each contains concrete details
for ArrayList, Array, etc.

<<interface>>
lterator

hasNext()
next()

/\

BreakfastMenu

DinerMenulterator
Iterator

hasNext()

next() hasNext()

next()

23

lterators for the Restaurants

e DinerMenulterator e The DinerMenu class must add a

o Maintains an index for the method createIterator() that
current array position. returns a new lterator.

o Constructor takes in the o The object returned is an
array and sets position to 0. instance of DinerMenu

o next() gets the item at the lterator, but the return type
current position, increments is the generic lterator.
position, and returns the o The client does not need to
item. know what type of Iterator it

o hasNext() checks to see if is working with - all have the
the position is at the end, or same methods.
if the next element is null e We can get rid of
(the menu isn’t full, but getMenuItems(). The Iterator

replaces it in a generic manner.

e The Waiter class can be
rewritten to remove redundant
loops.

we’ve seen everything).

24

Before and After

e Before Iterators

©)

Menus are not well
encapsulated. One uses
ArrayList and the other uses
Array.

We need two loops to iterate
over all Menultems.

The Waitress is bound to
concrete classes
Menultem[] and ArrayList.
The Waiter is bound to two
concrete Menu classes, with
near-identical interfaces.

e After Iterators

©)

O

O

Menu implementations are
encapsulated. The Waitress
does not know how Menus
hold their collections.

We need one loop that
polymorphically handles any
collection of items.

The Waitress now uses an
interface (lterator).

We can define a Menu
interface that has method
createlterator().

25

lterator Pattern Defined

e The lterator Pattern provides a way to
access the elements of an aggregate object
sequentially without exposing its underlying
representation.

e Once you have a uniform way to access
elements of all aggregate objects, your code
will work with any of these aggregates.

e [terator Pattern takes the responsibility of
traversing collections from the collection to
the Iterator itself.

26

lterator Pattern

- The [tevator interface
aving 3 Lommon in{;cr‘Facc «(:or Yyour ‘wovidcs the in{crcau

figgrcga{:cs is handy for Your client; that all iterators

‘rl: decouples your client from the must implement, and

implementation of Your collection of objccﬁs. a set of methods

(~ <<interface>>
Aggregate

createlterator()

‘ Client <<interface>> ‘(:o\r {ravcrsins over
Iterator elements oc a tollection.
hasNext() Here we're using the

next() Java.u{il.l{craﬁor. |£ You
remove() don’t want to use Java's

[tevator interface, You
ConcreteAggregate Concretelterator
createlterator() hasNext()
next()

tan always treate YYour
\ remove()
(—7 Eath ContreteAggreqate

Y

own.
is vesponsible £or

ihsfahfia‘l:ing 3 'X
The Concrc{cﬁggrcgaﬁc Contretelterator that j
has a eollection of tan iterate over its

; The Contretelterator is
objects and implements collection of objects.

vesponsible for managing
the method that the curvent ?osi{:ion of
veturns an [terator

: the itevation.
‘For its collection. 27

The Principle of Single Responsibility

e \Why do we not let collections manage their

own iteration?
o Why is it bad to increase the number of methods?

e This would give the collection two reasons to

change if we were to evolve the class.

o A class should have only one reason to change.

o Protect what changes from what might not (or from
other aspects that change).

o Assign each responsibility to one class alone.
m Thisis hard to ensure. Look for signals that a class is
changing in multiple ways as the system grows.

28

Adding a Dessert Submenu

All Menus

?‘Q«ufglo O

Orermers | Cteen |
1 2

4\ Heve's our Avraylist

that holds the menus

3

of each vestaurant.
Pancake Menu Café Menu
Piner Menu
Avray
r
Hashtable
7\ NS~/

Sl Pessert Menu

We need for Diner Menu to hold a submenu, but
we tan't ac‘cually assign a menu to a Menu[tem
arvay betause the types are diffevent, so this
isn't going to work.

29

What Do We Need?

Betause we need %o vepresent
menus, nCS{:cd sub menus and
menu items, we €an naturally
them in 3 Lree-like sbrutture.

o O: We need to
% & aecomodate Menus--

e Houd

A
Q Q9@

et Henimres Henimre

We still need to be able
Lo traverse the all the
kems in the tree.

© 00" N1

* .and meni items.

We al
t S0 need 1o be able 4o

ravcrse

; more .[." :

Ins exib]

née ovey one me Y ‘por
nu.

Q

esser

a,

Q Q9

= Honrren

The Composite Pattern

e The Composite Pattern allows you to
compose objects into tree structures to
represent hierarchies.

e Composite lets clients treat individual objects
and compositions of objects uniformly.

O
O
O

O

Elements with child elements are called nodes.
Elements without children are called leaves.

Menus are nodes, Menultems are leaves.
m Menus are compositions of other Menus and Menultems.

The Composite Pattern allows us to write code that
can apply the same operation (i.e., printing) over the

entire Menu structure.
31

The Composite Pattern

fines an
The Component de . ‘
ihicr(:a(.c for all ochc{‘,s n

ThC Co A
1 bhoth the mPonent may implem
The Client uses the he composition: bet £ nodes defaudt behavior for g
. hcr'ca“ to sike and the leat nodc : or tor add(), vemove()
Covn\’oncn{: n tompo 9etChild() and its opevations.)

manipulate the dbjects in the
Lom\?os\{:ion- \/ \/
Client S
operation()
add(Component)

remove(Component)
Note that the Leaf also E e
inherits methods fike add0),

remove() and 9etChild0), which

)
don’t ne{,cssari? make a lot of
sense £or 3 lea node. We've

90ing to come back to this issue. Leaf Composite
operation() add(Component)
remove(Component) h : u a\so
A Leaf has no — Ui P
¢hildven. operation() '\MY\C"‘C“’CS 9 c’c,\ovss.
7 velated s 3 ok
Note nat S‘T make
A Leaf defines the behavior for the Ehese ™3 77 ositer
elements in the composition. [+ does . _ [cense on 3 Cor? an
this by i"‘\’lemcn’cins the operations The Composite's yolesitodetne so that c.asck e
the Composite supports. behavior of the components _ exteption i
having ¢hildren and to store child 50\:\’3‘\',66

tomponents-

32

Designing Menus with Composite

MenuComponent vepresents the interfate for

'y Lo use the both Menultem and Menu. We've used an abstract
The Waitress \Sk‘f:“w Cace Lo atLess tlass heve betause we want to provide default
McmCoﬂ\YonC';d Menulkems implementations for these methods.
both Menvs 3
Waitress MenuComponent
getName() T
getDescription() We have some of the
getPrice() same methods YOM'"
isVegetarian() remember from our
prnt) previous versions o(:
::LCZTC?mZ::em) McnuH’,cm and Menw, b
b .
ol and we've added print(),
Here are the methods for /'% getChild(int) <20, vaseeel)-and

manipulating the LamponCnB
The comyancn{’,s are
Menultem and Menu.

5:{:Child(). We'll deseribe
these soon, when we
implement ovr new Menw

and Menultem tlasses:

Both Menultem and Menmus S mracs
overvide print(). z::g:";&mo menuComponents
getName()
\ i getDescription()
isVegetarian() print()
print() add(Component)
remove{Component)
getChild(int)

Menultem overvides the
! methods +h
;}cnse, and uses the default imple T
sc:::c(:;:‘;o:ht ‘Fos‘— those that (or other menus!) from its me
add a .:o:- . d(i— it doesn't lwa(;di:.\on wc’l.l use the Sd"NaM() e
o Ponent to a Menu/tem... we ¢an onl . o () methods to veturn the name
omPonents £o a Menuw). / gechsc"?ho“

and destription of the menw .

Menw also overvides the methods that mak.c
i sl like a way +o add and remove menu items
don’t make sense, mcom?o“nb.
make sense to

Implementing MenuComponent

McnuCom\?oncn{: ‘Wovidcs dc(:aul{:
implementations for every method.

public abstract class MenuComponent {

public void add(MenuComponent menuComponent) {
throw new UnsupportedOperationException () ;

}

public void remove (MenuComponent menuComponent) {
throw new UnsupportedOperationException();

}

public MenuComponent getChild(int i) {
throw new UnsupportedOperationException() ;

}

public String getName () {

throw new UnsupportedOperationException () ;
}
public String getDescription() {

throw new UnsupportedOperationException () ;
}
public double getPrice() {

throw new UnsupportedOperationException () ;
}
public boolean isVegetarian() {

throw new UnsupportedOperationException () ;

}

public void print () {
throw new UnsupportedOperationException () ;

}

Betause some of these methods only make sense
£or Menultems, and some only make sense for
Menus, the default implementation is
MnsuworbedO\?cvafionEchp{ion. That way,
if Menultem or Menu doesn’t support an
operation, they don't have to do anything,
they can just inherit the

dC‘Faulé img'tmcnfa{ion.

K We've grouped together the
“tomposite” methods — that is,
methods o add, vemove and get
MenuComponents.

Heve ave the “opevation’ methods;
fhese ave used by the Menultems.
|£ £uens out we tan also use @
touple of them in Menu too, 3s
you'll see in 3 touple of pages when
we show the Menu tode.

print() is an “opevation” method

/ that both our Menus and Menultems

will implement, but we provide a
default operation heve. 34

Implementing Menu Printing

public class Menu extends MenuComponent {
ArrayList menuComponents = new ArrayList();
String name;
String description;

// constructor code here

All we need %o do is thange {:\\.e E\rinﬂl::{j:i 3
// other methods here Lo make it print not only the n ormad t
this Meny, but all of this Menu's tomponen

public void print () ({ other Menus and Menultems.

System.out.print (“\n” + getName()):;

System.out.println(“, “ + getDescription()):;

Systen.out. . printin(t-———=—=-c——=s-—==s—== g 1 ékf/;>

Iterator iterator = menuComponents.iterator();

while (iterator.hasNext ()) L{) t & Look! We get to use an [tevator. We
MenuComponent menuComponent = use it to iterate through all the Menu's

(MenuComponent) iterator.next () ; (/ tomponents... those tould be other Menus,

menuComponent .print () ; or they could be Menultems. Sinte both

} Menus and Menultems implement P\rin{:(), we

! just ¢all print() and the vest is up to them.

NOTE: |£, during this iteration, we entounter another Menu
ob)cd:, its Prin‘f:() method will start another iteration, and so on.

35

A Design Trade-Off

e The Composite Pattern violates the Single
Responsibility principle.
o Composite Pattern manages a hierarchy and
performs operations on items in the hierarchy.

e Composite Pattern trades safety for

transparency.

o A client can treat composite and leaf nodes
uniformly. The type of node (composite or leaf) is
transparent to the client.

o We lose safety because the client might try to apply
Inappropriate operations to an element.

36

Bringing Back the Ducks

- public class DuckCall implements Quackable {
. FI rSt We public void quack() {
) System.out.println (“Kwak”) ; '
} _ A DuekCall that quacks but doesn |
n eed a : sound quite like the veal thing.

public class RubberDuck implements Quackable {

Quackable Pl Gl

System.out.println (“Squeak”) ; \’ A RubberDuCk hat makes 3
}

Interface. } e

public interface Quackable
public void quack(); ik <kandavd
ek
} public class MallardDuck implements Quackable { Ma“a"dd
public void quack() {
System.out.println (“Quack”) ;

}

e Now, some
DUCkS that public class RedheadDuck implements Quackable {

public void quack() {

- System.out.println (“Quack”) ;
Implement } T S

} of speties if we want this to be an

Q u a C ka b I e intevesting simulator.

37

... And Our Duck Simulator

(L/—_\ Here's our main method to

get everything 9oing

public class DuckSimulator {
public static void main(String[] args) { - ulat
a3 simulatovr
DuckSimulator simulator = new DuckSimulator(); £ We treate 3 si

e = and then eall its
| simulate() method.

void simulate () {
Quackable mallardDuck = new MallardDuck() ;

ks, so
Quackable redheadDuck = new RedheadDuck() ; We need some ducks,
Quackable duckCall = new DuckCall(); heve we treate one
Quackable rubberDuck = new RubberDuck/(); eath Quackable.-

System.out.println (“\nDuck Simulator”);

simulate (mallardDuck) ;

simulate (redheadDuck) ; _Lhen we simulate
simulate (duckCall) ; e eath one.
simulate (rubberDuck) ;
} Here we overload the simulate
/ method to simulate \')us{: one duck.
void simulate (Quackable duck) {
duck.quack () ;
}
} /t/ Heve we let polymorphism do its magie: no

matter what kind of Quackable gets passed in,
the simulate() method asks it to quack. 38

Challenge 1: Geese!

e (eese are not Ducks, but we can make
them Ducks using the Adapter Pattern

public class Goose {

public void honk() { ¥ Y NGessé is o honker,

System.out.println (“Honk”) ; not a quacker

/—\cmcm\)cr’ - Ada?{:ﬂ'

R .
public class GooseAdapter implements Quackable ({ -m‘,\c,ncn{;s the {-,argc{; intecfate,

CRESE. IgaastE Whith in this ease is Quatkable.

}

public GooseAdapter (Goose goose) E——— The tonstructor takes the

| this.goose = goose; goose we are 9oing to adapt.

bli id k
public. void guaekl) { &——___ When quack is called, the call is delegated

goose.honk () ;

} to the goosc's honk() method.
39

Integrating Geese into the Simulator

public class DuckSimulator {
public static void main(String[] args) {
DuckSimulator simulator = new DuckSimulator():;
simulator.simulate();

}

void simulate() { _
Quackable mallardDuck = new MallardDuck () ; We make 3 Qoose that acts like
Quackable redheadDuck = new RedheadDuck() ; 4 Duck by WaYYihﬁ the 6oosc
Quackable duckCall = new DuckCall(); T éooscﬁda\’{'«"'

Quackable rubberDuck = new RubberDuck():;
Quackable gooseDuck = new GooseAdapter (new Goose());

System.out.println (“\nDuck Simulator: With Goose Adapter”);

simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall) ; Onte the Goose is wrapped, we tan treat

simulate (rubberbuck) ; it just like other duck Quackables.
simulate (gooseDuck) ;

void simulate (Quackable duck) {
duck.quack () ;

}

Challenge 2: Counting Quacks

A biologist wants us
to count the
quacks, for some
reason...

We can create a
Decorator that
gives Ducks a new
behavior (counting)
by wrapping a Duck
with a decorator

object.
o We do not
need to

change Duck
behavior at all.

Like with Ada‘?‘{:c\r, we need to

QuatkCounter is detorator

1)

public class QuackCounter implements Quackable {
Quackable duck;
static int numberOfQuacks;

public QuackCounter (Quackable duck) {
this.duck = duck;

im‘:lemcn{: the target intecfate.

We've got an instante vaviable
%o hold on to the quacker
we're detorating.

And we've (.oun{ing ALL
quacks, so we'll use a statie
variable to keep track.

} \ We get the veference to Lhe

public void quack() {
duck.quack() ;
numberOfQuacks++;

S

public static int getQuacks () {
return numberOfQuacks;

- \

When quack() is &
} 'U’IC Qua(‘-kab,t we

- then we intrease the numbey-

Quackable we've decorating in
the tonstructor.

alled, we dele ate ¢
) h
e decwatin:._ wanclite

of quacks.

We've adding one other method
to the decorator. This statie

method Just veturns the number
of quacks that have otturred

in all Quackables.

41

Integrating Counting into the Sim

public class DuckSimulator {
public static void main (String[] args) {

DuckSimulator simulator = new DuckSimulator():; Each time we treate a

simulator.simulate () ; Quackable, we wrap it
} with 3 new decorator.
void simulate() {

Quackable mallardDuck = new QuackCounter (new MallardDuck());
Quackable redheadDuck new QuackCounter (new RedheadDuck()):;
Quackable duckCall = new QuackCounter (new DuckCall());
Quackable rubberDuck = new QuackCounter (new RubberDuck()):;
Quackable gooseDuck = new GooseAdapter (new Goose()):;

System.out.println (“\nDuck Simulator: With Decorator”);

simulate (mallardDuck) ; The park vanger told us he didn’t
simulate (redheadDuck) ; Wa";l: to tount 9eese honks, so we
simulate (duckCall) ; don't detovate it.
simulate (rubberDuck) ;
simulate (gooseDuck) ; v:/—‘\
Hevre's where we
System.out.println (“The ducks quacked “ + gather the quatking
QuackCounter.getQuacks () + % times”); pehavior for the
} Quatkologists.
void simulate (Quackable duck) {
} SRR & Nothing thanges here; the detorated
} obj“b ave still Quackables.

42

Challenge 3: Easy Duck Creation

e \We might find that too many Ducks are

being created without the decorator.
o You have to remember to decorate objects to get
decorated behavior.

e \We should take Duck creation and localize it

to one code location.
o Take Duck creation and decorating and encapsulate
it in one spot.

e \We can create a Duck Factory.

43

Duck Factory

We've defining an abstract faetory

f’\ that subtlasses will im?\c:mcr\{: to

eveate different Lamilies.
public abstract class AbstractDuckFactory {

public abstract Quackable createMallardDuck() ;
public abstract Quackable createRedheadDuck() ;
public abstract Quackable createDuckCall();

public abstract Quackable createRubberDuck() ;

eveates one kind of duck.
public class DuckFactory extends AbstractDuckFactory ({

public Quackable createMallardDuck() {

return new MallardDuck () ; DuthaL{:or\/ extends the

) abstract factory.
bli kabl Redh Duck :
USRS SRS | kg ol el s

a pavticular kind
The actval Yrodu&{: is unknown

public Quackable createDuckCall() { %o the simulator - it :)‘*5{" knows
return new DuckCall(); s getting 3 Quatkable.

}

}

public Quackable createRubberDuck() {
return new RubberDuck();

}

Decorated Duck Factory

Coun‘tith“CkFac{on
a\SO c*kcnds ‘t‘\c
sbstract Factory.
public class CountingDuckFactory extends AbstractDuckFactory {
public Quackable createMallardDuck() {
return new QuackCounter (new MallardDuck()):; Eaa,mguwd\mqysfhc
} Quatkable with the quack
ﬂ

Counfing detorator. The
simulator will never know
the differente; it just
gets back a Quackable.

public Quackable createRedheadDuck() {
return new QuackCounter (new RedheadDuck());

}

public Quackable createDuckCall () f{ But now our rangers ean
return new QuackCounter (new DuckCall ()); be sure that all quacks ar
} bcing tounted.

public Quackable createRubberDuck() {
return new QuackCounter (new RubberDuck()):;

}

Integrating the Factory

Fiest we ereate
the Qaﬁw\’ :
4 om
public class DuckSimulator { that WC‘"% 3
public static void main(String[] args) { to pass ™ 0
DuckSimulator simulator = new DuckSimulator(); &hcgmdatz

AbstractDuckFactory duckFactory = new CountingDuckFactory(); mc‘\')\"d'

simulator.simulate (duckFactory) ; (_/——F\J

}

void simulate (AbstractDuckFactory duckFactory) { The simulate()
Quackable mallardDuck = duckFactory.createMallardDuck(); method takes an
Quackable redheadDuck = duckFactory.createRedheadDuck() ; Abs{ractDuckFactory

Quackable duckCall = duckFactory.createDuckCall () ;
Quackable rubberDuck = duckFactory.createRubberDuck() ;
Quackable gooseDuck = new GooseAdapter (new Goose());

and uses it to ereate
dutks vather than
ins‘!:ahfla‘f:ing them

System.out.println(“\nDuck Simulator: With Abstract Factory”); divectly.

simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall);

simulate (rubberDuck) ; ‘(\
simulate (gooseDuck) ;
System.out.println(“The ducks quacked “ +

QuackCounter.getQuacks () +
“ times”);

Nothing thanges heve!
Same ol’ eode.

}

void simulate (Quackable duck) {
duck.quack() ;

) 46

Challenge 4: Managing a Flock

e This is not very manageable.

Quackable mallardDuck = duckFactory.createMallardDuck() ;
Quackable redheadDuck = duckFactory.createRedheadDuck() ;
Quackable duckCall = duckFactory.createDuckCall ();
Quackable rubberDuck = duckFactory.createRubberDuck();
Quackable gooseDuck = new GooseAdapter (new Goose());

simulate (mallardDuck);
simulate (redheadDuck) ;
simulate (duckCall) ;
simulate (rubberDuck) ;
simulate (gooseDuck) ;

e \Why are we managing ducks individually?

o We need a way to talk about collections of Ducks
(flocks?) or subcollections of Ducks (to please our
biologist).

o The Composite pattern allows us to treat a group as
we would an individual.

47

Creating a Flock

{ implement
the tom osite needs to imp
; : the leaf elements. Our

RCmc"\bcr,
the same intevfate as
leal elements are Quatkables.

! 2 . - -
public class Flock implements Quackable { We're using an Awa\/Lns{: inside

ArraylList quackers = new ArrayList(); / eath Flock to hold the Quackables
that belong to the Flock.

public void add (Quackable quacker) {

quackers.add (quacker) ; N_’__ The add() method adds a

| Quatkable to the Floek.

public void quack() {
Iterator iterator = quackers.iterator();
while (iterator.hasNext()) {
Quackable quacker = (Quackable)iterator.next();
quacker.quack() ;

(Also - spot the Iterator)

t Now for the a\uaCk() mekhod — after all, the Flotk is a Qua6k3b|c 'l\::o-
The o\uack() method in Flotk needs to work over the entive Flotk. Here

[h ‘ me {
we ikevate through the AvrayList and tall quack() on each elemen .

Integrating the Flock

public class DuckSimulator {

// main method here Create all the
Quatkables, just
void simulate (AbstractDuckFactory duckFactory) { like before.

Quackable redheadDuck = duckFactory.createRedheadDuck/() ;
Quackable duckCall = duckFactory.createDuckCall();

Quackable rubberDuck = duckFactory.createRubberDuck() ;
Quackable gooseDuck = new GooseAdapter (new Goose());
System.out.println(“\nDuck Simulator: With Composite - Flocks”);

<\ First we eveate a Flock, and

load it up with Quackables.

Flock flockOfDucks = new Flock();

flockOfDucks . add (redheadDuck) ;

flockOfDucks. add (duckCall) ;
flockOfDucks . add (rubberDuck) ; M/

flockOfDucks.add (gooseDuck) ; Then we treate 3 new
é/ Flotk of Mallards

Flock flockOfMallards = new Flock();

Quackable mallardOne = duckFactory.createMallardDuck(); L‘,/—\ Here we've

Quackable mallardTwo = duckFactory.createMallardDuck(); Crea{ing a

Quackable mallardThree = duckFactory.createMallardDuck(); little §am-||\/ of

Quackable mallardFour = duckFactory.createMallardDuck() ; mallards...

flockOfMallards.add(mallardOne) ;
flockOfMallards.add (mallardTwo) ; L ..and adding them to the
flockOfMallards.add (mallardThree) ; Flotk of mallards.

flockOfMallards.add (mallardFour) ;
é—’/ Then we add the Flock of
flockOfDucks . add (flockOfMallards) ; mallards to the main flock.

System.out.println(“\nDuck Simulator: Whole Flock Simulation”);
simulate (flockOfDucks) ; ,
() & Let's test out the entive Flock!

System.out.println(“\nDuck Simulator: Mallard Flock Simulation”);
simulate (flockOfMallards) ; :
L T let’s just test out the mallard’s Flock.
System.out.println(“\nThe ducks quacked “ +

QuackCounter.getQuacks () +

" times”);
: R_— Finally, let’s give the
Quackologist the data.

void simulate (Quackable duck) {
duck.quack() ;

} _ Nothing needs to thange heve, a Flotk is a Quackable! 49

Wrapping Up

e Template Method Pattern encapsulates
pieces of algorithms so that subclasses can
hook into a computation.

e [terator Pattern encapsulates the details of
iterating through collections of items.

e Composite Pattern allows transparent
treatment of collections and items.

50

Next Time

e From Design to Implementation
o Modeling dynamic behavior of objects.
o UML sequence diagrams
o |Implementation practices
o Reading
m Sommerville, chapter 5, 7
m Fowler, chapter 4

e Homework 3
o Due April 7

51

