
Structural Testing:
Path-Based Coverage
CSCE 247 - Lecture 23 - 04/17/2019

We Will Cover

● Additional structural testing strategies
○ Path-based testing strategies
○ Procedure coverage

● Challenges of structural testing
○ Infeasibility problem
○ Sensitivity to structure and oracle

2

Path Coverage

● Other criteria focus on single elements.
○ However, all tests execute a sequence of elements -

a path through the program.

○ Combination of elements matters - interaction
sequences are the root of many faults.

● Path coverage requires that all paths
through the CFG are covered.

● Coverage = Number of Paths Covered
Number of Total Paths

3

How many cases
for

Statement
Branch
Path

Path Testing

loop <= 20

4

Number of Tests

Path coverage for that loop bound requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the
benefits of path coverage without the cost...

5

Path Coverage

● Theoretically, the strongest coverage metric.
○ Many faults emerge through sequences of

interactions.

● But… Generally impossible to achieve.
○ Loops result in an infinite number of path variations.
○ Even bounding number of loop executions leaves an

infeasible number of tests.

6

Boundary Interior Coverage

● Need to partition the infinite set of paths into
a finite number of classes.

● Boundary Interior Coverage groups paths
that differ only in the subpath they follow
when repeating the body of a loop.
○ Executing a loop 20 times is a different path than

executing it twice, but the same subsequences of
statements repeat over and over.

7

Boundary Interior Coverage

A

B

M C

D E

F G

H I

L

A

B

M C

D E

F G

H I

L L

L

L

B

BB

B

B -> M

B -> C -> E -> L -> B

B -> C -> D -> F -> L -> B

B -> C -> D -> G -> H -> L -> B

B -> C -> D -> G -> I -> L -> B

8

Number of Paths
● Boundary Interior Coverage

removes the problem of
infinite loop-based paths.

● However, the number of
paths through this code can
still be exponential.
○ N non-loop branches results

in 2N paths.
● Additional limitations may

need to be imposed on the
paths tested.

if (a) S1;

if (b) S2;

if (c) S3;

…

if (x) SN;

9

Loop Boundary Coverage
● Focus on problems related to loops.
● Cover scenarios representative of how loops might

be executed.
● For simple loops, write tests that:

○ Skip the loop entirely.
○ Take exactly one pass through the loop.
○ Take two or more passes through the loop.
○ (optional) Choose an upper bound N, and:

■ M passes, where 2 < M < N
■ (N-1), N, and (N+1) passes

10

Nested Loops
● Often, loops are nested within other loops.
● For each level, you should execute similar

strategies to simple loops.
● In addition:

○ Test innermost loop first with outer loops
executed minimum number of times.

○ Move one loops out, keep the inner loop at
“typical” iteration numbers, and test this
layer as you did the previous layer.

○ Continue until the outermost loop tested.

11

Concatenated Loops
● One loop executes. The next line of code

starts a new loop.
● These are generally independent.

○ Most of the time...
● If not, follow a similar strategy to nested

loops.
○ Start with bottom loop, hold higher loops

at minimal iteration numbers.
○ Work up towards the top, holding lower

loops at “typical” iteration numbers.

12

Why These Loop Strategies?

● In proving formal correctness of a loop, we would establish
preconditions, postconditions, and invariants that are true on
each execution of the loop, then prove that these hold.
○ The loop executes zero times when the postconditions

are true in advance.
○ The loop invariant is true on loop entry (one), then each

loop iteration maintains the invariant (many).
■ (invariant and !(loop condition) implies postconditions)

● Loop testing strategies echo these cases.

Why do these loop values make sense?

13

Linear Code Sequences and Jumps
● Often, we want to reason about the

subpaths that execution can take.
● A subpath from one branch of control

to another is called a LCSAJ.
● The LCSAJs for this example:

From To Sequence of Basic Blocks

entry j1 b1, b2, b3

entry j2 b1, b2, b3, b4, b5

entry j3 b1, b2, b3, b4, b5, b6, b7

j1 return b8

j2 j3 b7

j3 j2 b3, b4, b5

j3 j3 b3, b4, b5, b6, b7

collapseNewlines(String
argSt)

char last = argStr.charAt(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.l
ength();

char ch =
argStr.charAt(cldx);

T

return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

J1

J2

J3

B1

B2

B3

B4

B5

B6 B7

B8

14

LCSAJ Coverage
● We can require coverage of all sequences of LCSAJs of

length N.
○ We can string subpaths into paths that connect N subpaths.
○ LCSAJ Coverage (N=1) is equivalent to statement coverage.
○ LCSAJ Coverage (N=2) is equivalent to branch coverage

● Higher values of N achieve stronger levels of path
coverage.

● Can define a threshold that offers stronger tests while
remaining affordable.

15

Procedure Call Testing

● Metrics covered to this point all look at code
within a procedure.

● Good for testing individual units of code, but
not well-suited for integration testing.
○ i.e., subsystem or system testing, where we bring

together units of code and test their combination.
● Should also cover connections between

procedures:
○ calls and returns.

16

Entry and Exit Testing
● A single procedure may

have several entry and
exit points.
○ In languages with goto

statements, labels allow
multiple entry points.

○ Multiple returns mean
multiple exit points.

● Write tests to ensure
these entry/exit points
are entered and exited
in the context they are
intended to be used.

int status (String str){

if(str.equals(”panic”))

return 0;

else if(str.contains(“+”))

return 1;

else if(str.contains(“-”))

return 2;

else

return 3;

}

● Finds interface errors
that statement coverage
would not find.

17

Call Coverage
● A procedure might be

called from multiple
locations.

● Call coverage requires
that a test suite
executes all possible
method calls.

● Also finds interface
errors that
statement/branch
coverage would not find.

void orderPizza (String str){

if(str.contains(”pepperoni”))

addTopping(“pepperoni”);

if(str.contains(“onions”))

addTopping(“onions”);

if(str.contains(“mushroom”))

addTopping(“mushroom”)

}

● Challenging for OO
systems, where a
method call might be
bound to different
objects at runtime.

18

Activity:
Writing Loop-Covering Tests

For the binary-search code:
1. Draw the control-flow graph for the method.
2. Identify the subpaths through the loop and

draw the unfolded CFG for boundary interior
testing.

3. Develop a test suite that achieves loop
boundary coverage.

19

CFG

int bott, top, mid;
bott=0; top=size-1;
L = 0;

T[L]
==
key

found=false;found=true;

FT

bott<=to
p &&
!found

EXIT
F

mid=round(top+
bott/2);

T

T[mid]
== key

found=true;
L= mid;

T

T[mid]
< key

F

bott=mid+1;

top=mid-1;

T

F

20

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

21

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

E

E

E

22

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

E

Tests that execute the loop:
● 0 times
● 1 time
● 2+ times

key = 1, T = [1], size = 1
key = 2, T = [1, 2], size = 2
key = 3, T = [1, 2, 3], size = 3

23

The Infeasibility Problem

Sometimes, no test can satisfy an obligation.
● Impossible combinations of conditions.
● Unreachable statements as part of defensive

programming.
○ Error-handling code for conditions that can’t actually

occur in practice.
● Dead code in legacy applications.
● Inaccessible portions of off-the-shelf

systems.

24

The Infeasibility Problem

Problem compounded for
path-based coverage criteria.
Not possible to traverse the
path where both if-statements
evaluate to true.

if (a < 0) a = 0;

if (a > 10) a = 10;

Stronger criteria call for potentially infeasible
combinations of elements.

(a > 0 && a < 10)
It is not possible for both conditions to be false.

25

The Infeasibility Problem

How this is usually addressed:
● Adequacy “scores” based on coverage.

○ 95% branch coverage, 80% MC/DC coverage, etc.
○ Decide to stop once a threshold is reached.
○ Unsatisfactory solution - elements are not equally

important for fault-finding.
● Manual justification for omitting each

impossible test obligation.
○ Required for safety certification in avionic systems.
○ Helps refine code and testing efforts.
○ … but very time-consuming.

26

In Practice.. The Budget Coverage
Criterion

● Industry’s answer to “when is testing done”
○ When the money is used up
○ When the deadline is reached

● This is sometimes a rational approach!
○ Implication 1:

■ Adequacy criteria answer the wrong question.
Selection is more important.

○ Implication 2:
■ Practical comparison of approaches must

consider the cost of test case selection

27

Which Coverage Metric Should I
Use?

Statement Coverage

Branch Coverage Basic Condition
Coverage

Branch and Condition
Coverage

MC/DC Coverage

Compound Condition
Coverage

Path Coverage

Power,
Cost

Generally Impractical
Boundary Interior

Testing

LCSAJ Testing

Loop Boundary Testing

28

Where Coverage Goes Wrong...

● Testing can only reveal a fault when
execution of the faulty element causes a
failure, but…

● Execution of a line containing a fault does
not guarantee a failure.
○ (a <= b) accidentally written as (a >= b) - the fault

will not manifest as a failure if a==b in the test case.

● Merely executing code does not guarantee
that we will find all faults.

29

Don’t Rely on Metrics

● There is a small benefit from using coverage as a
stopping criterion.

● But, auto-generating tests with coverage as the goal
produces poor tests.

● Two key problems - sensitivity to how code is written,
and whether infected program state is noticed by oracle.

30

Sensitivity to Structure

expr_1 = in_1 || in_2;
out_1 = expr_1 && in_3;

out_1 = (in_1 || in_2) && in_3;

● Both pieces of code do the same thing.
● How code is written impacts the number and

type of tests needed.
● Simpler statements result in simpler tests.

31

Sensitivity to Oracle

● The oracle judges test correctness.
○ We need to choose what results we check when

writing an oracle.
● Typically, we check certain output variables.

○ However, masking can prevent us from noticing a
fault if we do not check the right variables.

○ We can’t monitor and check all variables.
○ But, we can carefully choose a small number of

bottleneck points and check those.
■ Some techniques for choosing these, but still

more research to be done.

32

Coverage Effectiveness

Sensitive to
choice of
oracle. Sensitive to

structuring of
the system.

Still sensitive
to choice of
oracle.

33

Masking

Why do we care about faults in masked
expressions?
● Effect of fault is only masked out for this test.

It is still a fault. In another execution
scenario, it might not be masked.

● We just haven’t noticed it yet.
○ The fault isn’t gone, we just have bad tests.

● One solution - ensure that there is a path
from assignment to output where we will
notice the fault.

34

One Solution - Observability

● Measure how well internal program state can
be inferred from the output.

● The execution of an expression can be
observed if we can modify its value and
observe a change in the program output.

● Adds path constraints to existing coverage
obligations requiring a path from expression
to output free of masking.

35

Observable MC/DC

MC/DC + observability = Observable MC/DC
● MC/DC requires that conditions impact the

outcome of a decision.
● OMC/DC requires that conditions impact the

outcome of the program.

Idea: Lift observability from decision level to
program level.

36

Tagging Semantics

Assign each condition a tag set:
(ID, Boolean Outcome)
Evaluation determines tag propagation:
exp1=c1 && c2;
exp2=c3 || c4;
out=if (c5) then
exp1 else exp2;

[(c1,true), (c2,false)][(c1,true), (c2,false)]
[(c3,true), (c4,false)][(c3,true), (c4,false)]

[(c5,true), <exp1>,<exp2>][(c5,true),(c2, false),
<exp2>]

37

Benefits of Observability

OMC/DC should improve test effectiveness by
accounting for program structure and oracle
composition:
● We select what points the oracle monitors,

OMC/DC requires propagation path to those
points.

● No sensitivity to structure because impact
must be propagated at monitoring points.
○ i.e., we place conditions on the path taken.

38

Evaluation - Results

DWM_1 System
39

Still Not a Solved Problem

● OMC/DC often prescribes a large number of
infeasible obligations.

● Tests can be difficult to derive.
● Often results in better fault-finding, but not

100% fault-finding (especially in complex
systems).

● New coverage metrics and structural
coverage methods are being formulated.

40

We Have Learned

● Strategies to get the benefits of path
coverage without the cost.

● Procedure coverage metrics.
● How coverage criteria relate in terms of cost

and power.
● Weaknesses of structural testing.

41

Next Time

● Dependability and When to Stop Testing
○ Statistical testing and reliability measurement.
○ Reading: Sommerville, ch. 11

● Homework 4.
○ Due April 21
○ Questions?

42

