
Final Review
CSCE 247 - Lecture 26 - 04/29/2019

We Will Cover

● You have a final next Monday
○ May 6, 4:00 - 6:30 PM

● Topics:
○ Architecture
○ OO Design
○ Design Patterns
○ Class/Sequence Diagrams

● There is a practice exam on the course site.
● Let’s go over it!

2

○ Structural Testing
○ Dependability
○ Statistical Testing
○ Code Smells/Refactoring

Question 1
Which of the following make sense as classes (rather than objects) in a
class diagram?
1. Homework Assignment
2. Manton Matthews
3. Group 5’s Assignment 5
4. Person

Which of the following coverage criteria always requires more test
cases than the others?
1. Statement Coverage
2. Branch Coverage
3. Path Coverage
4. None of the above

3

Question 1 - True/False
● Requirements-based test cases help the writer clarify the

requirements.
● An Object is an instantiation of a Class.
● The goal of testing is to remove defects from the software.
● The use of global variables generally increases coupling.
● An oracle is needed to determine whether a test succeeded.
● Testing can be used to demonstrate that a program is free of

faults.
● Path coverage is generally impossible to achieve, but if we

could, we would expose all faults in the program.

4

Question 2

Describe the key difference between black-box
testing and white-box testing.

5

Question 2 - Solution
Black-box testing treats the program as a machine that
accepts input and issues output, with no visibility into its
internal workings.
● Tests are based on requirements and specifications.
● You do not know what classes or methods are in the

code, and you do now know what objects exist at
runtime.

White-box involves testing the independent logic paths with
full knowledge of the source code. You do not have full
knowledge of the intended functionality (white box tests
cannot look for unimplemented code).
 6

Question 3

Building a weather monitoring application.
Generates three displays: current conditions, weather
statistics, simple forecast.
Design system using either visitor or observer pattern.

Provided: To Implement:

Physical
Hardware

Humidity Sensor

Temperature
Sensor
Pressure
Sensor

Display
Hardware

Weather
Data System

Pulls data from.

Displays
to

7

Question 3 - Solution
<<interface>>
Observable

addObserver(observer)
removeObserver(observer)
notify()

<<interface>>
Observer

update()

WeatherData

List<Observer> Displays

addObserver(Observer)
removeObserver(Observer)
notify()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

CurrentConditions
Display

WeatherData data

update()
display()

<<interface>>
Display

display()

ForecastDisplay

WeatherData data

update()
display()

StatisticsDisplay

WeatherData data

update()
display()

8

Question 4
We considered architectural styles, including pipe and filter, layered, and
repository.

Suppose that you are to design an automotive system whose subsystems (a-h)
are enumerated below. For each style discussed above, choose a subsystem
from the set below and describe why this style would be an appropriate
structuring mechanism - and why - or describe why this style does not apply to
any of the subsystems.
 a. On-star communications: manages communications with satellite
 b. sensor management: turns noisy sensor data into useful information
 c. motion control: operates the motors and provides position and velocity
 d. Image processing system to identify highway lanes
 e. UX vehicle management involving touch screen
 f. Health/status monitoring: checks status of all other subsystems to ensure correct operation
 g. Collision avoidance system
 h. Dashboard displays

9

Question 4 - Solution
● Pipe-and-filter:

○ Sensor management; there are several de-noising and sensor fusion
transforms that are straightforward to describe using pipe-and-filter
architectural styles. Similar arguments could be made for
communications with filters for compression / encryption.

● Layered:
○ There is a natural layering between supervisory control, navigation

control, and motion control. Communications systems themselves are
often layered as well (see TCP runs over IP which runs over physical
comms)

● Repository:
○ Health and status monitoring is often performed using a repository

architecture, where vehicle health from many systems is aggregated
into one place. Also could be used as a data-plane underlying many of
the systems mentioned here.

10

Question 5

Are path coverage and exhaustive testing the
same thing? Motivate your answer.

11

Question 5 - Solution

● No. Path coverage “only” requires that every
path is exercised; it does not require that every
input is tested.

● One can provide path coverage without testing
every instance of the inputs that would take you
down that path.
○ Problems with divide-by-zero,

null-pointer-dereferencing, etc. might not be
caught.

12

Question 6
● Draw the control-flow

graph for this method.
● Develop test input that will

provide statement
coverage.

● Develop test input that will
provide branch coverage.

● Develop test input that will
provide path coverage.

int findMax(int a, int b, int c) {

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

13

Question 6 - Solution
1. int findMax(int a, int b, int c) {

2. int temp;

3. if (a>b)

4. temp=a;

5. else

6. temp=b;

7. if (c>temp)

8. temp = c;

9. return temp;

10. }

2

3

6

4
T

F

8

7

9

T F

Statement:
(3,2,4), (2,3,4)

Branch:
(3,2,4), (3,4,1)

Path:
(4,2,5), (4,2,1), (2,3,4),
(2,3,1)

14

Question 6 - Solution
● Modify the program to

introduce a fault such that
even path coverage could
miss the fault.

int findMax(int a, int b, int c) {

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

Use (a >b+1) instead of (a>b) and
the test input from the last slide:
(4,2,5), (4,2,1), (2,3,4), (2,3,1)
will not reveal the fault.

15

Question 7
Students at USC can be enrolled in more than one class at the time. There is
also an option to not be enrolled in any classes (under special circumstances).
We do not offer classes with no students at all.
To allocate teaching effort, there is one instructor assigned to each class. Some
instructors might not teach any class. Each class uses a textbook (a book that
can be used in other classes also). Depending on class size, there are TAs
assisting in the class. A small class gets no TAs, a large class might get several
TAs. When all is done in the class, the instructor assigns the student a grade
for the course. In return, each student must fill out a course evaluation form for
the course.

Develop the class diagram for the situation described above.

16

Question 7 - Solution
Instructor

Textbook

TA

Course Student

Grade

Evaluation

Assists In

0..*

0..*

Used In

1

0..*
Enrolled In0..* 1..*

Provides

1 1

1

Teaches
1

0..*

Grades

1 1

11

17

Question 8 - Scenario 1
Scenario 1 (Requesting a Ride Down):
A person approaches the elevator on the fifth floor. She wants to go down so she presses the “down” button
next to the elevators. She waits until an elevator arrives and the doors open. She enters the elevator and
presses the elevator button for the ground floor (floor 1). The light next to the button for the first floor is lit.

f5Button :
FloorButton

scheduler:
RequestScheduler

car:
Elevator

door:
ElevatorDoor

f5Door:
FloorDoor

pressDown() sendRequest(5)
; stopRequest(5); moveToFloor(5);

openDoor();

carButton:
ElevatorButton

pressFloorButton(1);

openDoor();

lightOn();

18

A Person

Question 8 - Scenario 2
Scenario 2 (Getting Off at a Floor):
A person is standing in the elevator with the door closed. The person pushes the elevator button for floor 5
(and there are no other requests). The elevator stops at the fifth floor, opens the doors, and the person steps
out. The elevator doors close.

car:
Elevator

door:
ElevatorDoor

f5Door:
FloorDoor

openDoor();

carButton:
ElevatorButton

lightOn();

pressFloorButton(5); stopRequest(5);
moveToFloor(5);

openDoor();

closeDoor();
closeDoor();

19

A Person

Question 9
You are developing software that will simulate and execute finite
state machines.
● A state machine consists of states and transitions.

○ One state is special and designated to be the initial state (this
is where we always start). Besides this, the initial state is just
like all other states.

○ The transitions have transition conditions associated with them.
A transition condition consists of a trigger event, a guarding
condition, and a possibly empty set of actions (actions are
events generated as a result of taking the transition).

Develop the Class Diagram for this software.

20

Question 9 - Solution
State Machine

State

initial: boolean

Transition

1 1

0..*

normal
states

initial
state

1

1
source

destination

1
0..*

0..*1

TransitionCondition

Condition

GuardingCondition

1
1

TriggerEvent

Action

1
1

1

0..*

Event

0..*

21

Question 10
You are building a web store that you feel will unseat Amazon as the king of
online shops. Your marketing department has come back with figures stating
that - to accomplish your goal - your shop will need an availability of at least
98.5%, a probability of failure on demand of less than 0.1, and a rate of
fault occurrence of less than 2 failures per 8-hour work period.

You have recently finished a testing period of one week (seven full 24-hour
days). During this time, 972 requests were served to the page. The product
failed a total of 64 times. 37 of those resulted in a system crash, while the
remaining 27 resulted in incorrect shopping cart totals. When the system
crashes, it takes 3 minutes to restart it.

22

Question 10
You have recently finished a testing period of one week (seven full 24-hour
days). During this time, 972 requests were served to the page. The product
failed a total of 64 times. 37 of those resulted in a system crash, while the
remaining 27 resulted in incorrect shopping cart totals. When the system
crashes, it takes 3 minutes to restart it.

1. What is the rate of fault occurrence?
2. What is the probability of failure on demand?
3. What is the availability?
4. What additional information would you need to calculate the mean time

between failures?
5. Is the product ready to ship? If not, why not?

23

Question 10 - Solution

1. 64/168 hours = 0.38 per hour = 3.04 per
work period

2. 64/972 = 0.066
3. 37*3 = 111 minutes downtime. 111/10080

minutes = 0.011. Avail = 98.9%
4. The times that failures occurred. You know

how many, but not when.
5. No. Avail is good, ROCOF is not.

24

Question 11
During development and maintenance, some organizations track
“bad fixes” - a bug fix that introduces new faults in the software
when the original fault is corrected. The ratio of bad fixes to
“good fixes” can be measured.
● For example, the ratio of bad fixes to good fixes could be 1% (there

is one bad fix for every 100 good fixes).
● In some troubled projects the bad fix ratio might be over 100%!

What effect will a bad fix ratio of >100% have on software
quality?
What do you think would be the main contributor to a very high
bad fix ratio? Justify your answer.

25

Question 11 - Solution
A bad fix ratio over 100% means that more faults are being
added than are being fixed. Software quality will
deteriorate.

Poorly-structured software is likely to be the culprit. With
low cohesion, high coupling, or hard-to-understand
algorithms, it is hard to track down the real source of a fault
(may only make a partial fix) and easy to introduce new
faults (hard to determine the effect of a fix on other parts of
the program).

26

Question 12
A class diagram in UML is generally used during design,
but can also be a useful tool in the requirements elicitation
stage of a software development project. Discuss briefly
how class diagrams might be used in this stage of
development.

27

Question 12 - Solution
UML class diagrams are useful for visualizing entities and
their relationships at any level of abstraction.
● Relationships between data items in the problem

domain.
● Clarify the relationships between concepts (credit cards

and customers, students and professors, students and
grades, etc).

● Model can serve as the foundation for natural language
requirements by structuring the problem domain.
○ Cleaner and easier to write specifications because

we can relate to the diagram.
28

Question 13
When performing reliability (statistical) testing, an
operational profile is absolutely essential for the test-data
selection. Why? What is the effect of an inaccurate
operational profile?

29

Question 13 - Solution
Since the reliability metrics are designed to measure the
reliability of a system under normal operating conditions it
is essential to know what “normal” operating conditions are.
● This is what the operational profile is supposed to

capture.
● If the reliability is assessed using a profile that does not

accurately capture the real operating conditions, the
measure is meaningless.

30

Any other questions?

Thank you for a great
semester!

31

