
DIT635 - Assignment 3: Mutation Testing and
Finite-State Verification
Due Date: ​Friday, March 13, 23:59 (Via Canvas)

There are two questions, worth a total of 100 points. You may discuss these problems in your
teams and turn in a single submission for the team (zipped archive) on Canvas. Answers must
be original and not copied from online sources.

Cover Page:​ On the cover page of your assignment, include the name of the course, the date,
your group name, and a list of your group members.

Peer Evaluation:​ All students must also submit a peer evaluation form. This is a seperate,
individual submission on Canvas. Not submitting a peer evaluation will result in a penalty of five
points on this assignment.

Problem 1 (45 Points)

In this question, you will apply Mutation Testing to the code from the CoffeeMaker example from
Assignment 1. The CoffeeMaker code can be found at:
http://Greg4cr.github.io/courses/spring20dit635/Assignments/CoffeeMaker_JUnit.zip

1. Generate at least four mutants for any of the classes in the CoffeeMaker project (except
Main). Your report should include the mutated code, noting how it differs from the
original code. ​(20 Points)

a. You must create at least one invalid, one valid-but-not-useful (non-equivalent),
one useful, and one equivalent mutant.

b. Each mutant must be created by applying a different mutation operator, and you
must use at least one mutation operator from each of the three categories in the
attached handout.

c. You do not have to use the same classes or methods for all mutant categories.
Try mutating different parts of the code.

2. Assess your test suite that you created for Assignment 1, with respect to the set of
mutants that you derived - Are you able to kill all of the non-equivalent mutants with your
test suite? If not, describe which non-equivalent mutants cannot be differentiated from
the original code using your original test suite, and why they cannot be differentiated.
Write additional tests that can kill those non-equivalent mutants. ​(15 Points)

3. Identify a minimal subset of tests from your test suite that is sufficient to kill all of the
non-equivalent mutants. ​(10 Points)

http://greg4cr.github.io/courses/spring20dit635/Assignments/CoffeeMaker_JUnit.zip

Problem 2 (55 Points)

For this exercise, you are required to create a finite-state model of a traffic-light controller and
verify its properties using the NuSMV symbolic model-checker (download from
http://nusmv.fbk.eu/​ -​ we will not provide technical support for this tool​)

● Assume that the controller manages traffic and pedestrian lights at the intersection of
two roads, both with two-way traffic.

● Pedestrians can request access to cross the road by pressing a “walk button”.
● Assume that the system has traffic sensors for each direction to detect if vehicles are

present and waiting to pass through, which allows the system to manage traffic flow
efficiently by varying the amount of time the lights are green for each road/direction
based on demand. Your model should capture and represent this notion of varying time
in some manner (i.e., do not abstract away time).

● There are emergency vehicle sensors for each direction which lets the system provide
priority access for emergency vehicles by switching lights appropriately.

You may state and make any other reasonable simplifying assumptions that you need. A
simplified traffic light model appears in the slides for Lecture 14. Understanding that model is a
good first step in solving this problem.

In your submission, you must address the following:

1. Define the scope and the requirements for the system that you intend to model – a brief
description of what you have modeled, any assumptions that you have made and the
key requirements you expect the system to satisfy. ​(10 Points)

2. Build a finite state model of the system in the NuSMV language. Be sure to write
sufficient comments. (Though not required, you may find drawing state diagrams
helpful). ​(20 Points)

3. Write at least three ​safety​ properties (“something bad must never happen”) in temporal
logic (CTL or LTL) that must be satisfied by the system. Explain your properties and
state which system requirements those properties are derived from. ​(10 Points)

4. Write at least three ​liveness​ properties (“something good must eventually happen”) in
temporal logic (CTL or LTL) that must be satisfied by the system. Explain your properties
and state which system requirements those properties are derived from. ​(10 Points)

5. Verify your properties on your system using the NuSMV symbolic model checker and
provide a transcript of your NuSMV session. ​(5 Points)

http://nusmv.fbk.eu/

318 Fault-Based Testing

ID Operator Description Constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 C1 �= C2
scr scalar for constant replacement replace constant C with scalar variable X C �= X
acr array for constant replacement replace constant C with array reference

A[I]
C �= A[I]

scr struct for constant replacement replace constant C with struct field S C �= S
svr scalar variable replacement replace scalar variable X with a scalar

variable Y
X �= Y

csr constant for scalar variable replacement replace scalar variable X with a constant
C

X �= C

asr array for scalar variable replacement replace scalar variable X with an array
reference A[I]

X �= A[I]

ssr struct for scalar replacement replace scalar variable X with struct field
S

X �= S

vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant

C
A[I] �= C

sar scalar for array replacement replace array reference A[I] with scalar
variable X

A[I] �= X

cnr comparable array replacement replace array reference with a compara-
ble array reference

sar struct for array reference replacement replace array reference A[I] with a struct
field S

A[I] �= S

Expression Modifications
abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator ψ with arith-

metic operator φ
e1ψe2 �= e1φe2

lcr logical connector replacement replace logical connector ψ with logical
connector φ

e1ψe2 �= e1φe2

ror relational operator replacement replace relational operator ψ with rela-
tional operator φ

e1ψe2 �= e1φe2

uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select
test cases that distinguish generated mutants from the original program.

