
Exercise Session 2:
Unit Testing

Gregory Gay
DIT635 - February 7, 2020

Enter… The Planning System
• Code on Canvas:

• https://canvas.gu.se/courses/25762/fi
les/folder/Misc?preview=2280199

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book
rooms or employees for meetings.

• System to manage schedules and
meetings.

2

https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199
https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199

The Planning System
Offers the following high-level features:
1. Booking a meeting
2. Booking vacation time
3. Checking availability for a room
4. Checking availability for a person
5. Printing the agenda for a room
6. Printing the agenda for a person

3

Develop a Test Plan
In groups, come up with a test plan for this system.
• Given the above features and the code

documentation, plan out a series of test cases to
ensure that these features can be performed
without error.

4

Food for Thought
• What are the “testable units”?

• Your tests may use any of the classes in the system, and
may be at the method, class, or system level.

• Think about both normal execution and illegal
inputs/actions.
• How many things can go wrong?
• You will probably be able to add a normal meeting, but

can you add a meeting for February 35th?
• Try it out - you have the code.

5

Develop Unit Tests

6

• If a test is supposed to cause an exception to be
thrown. Make sure you check for that exception.

• Make sure that your expected output is detailed
enough to ensure that - if something is supposed to
fail - that it fails for the correct reasons.

Find Any Faults?

7

Did You Find the Faults?
1: getMeeting and removeMeeting perform no error
checking on dates.

public Meeting getMeeting(int month, int day, int index){

return occupied.get(month).get(day).get(index);

}

public void removeMeeting(int month, int day, int index){

occupied.get(month).get(day).remove(index);

}

8

Did You Find the Faults?
2: Calendar has a 13th month.
public Calendar(){

occupied = new ArrayList<ArrayList<ArrayList<Meeting>>>();

for(int i=0;i<=13;i++){

// Initialize month

occupied.add(new ArrayList<ArrayList<Meeting>>());

for(int j=0;j<32;j++){

// Initialize days

occupied.get(i).add(new ArrayList<Meeting>());

}

}

}
9

Did You Find the Faults?
3: November has 30 days.
Oh - and we just added a meeting to a day with a date that
does not match that date.

occupied.get(11).get(30).add(new Meeting(11,31,"Day does not

exist"));

10

Did You Find the Faults?
4: Used a >= in checking for illegal times. December
no longer exists.

if(mMonth < 1 || mMonth >= 12){

throw new TimeConflictException("Month does not

exist.");

}

11

Did You Find the Faults?
5: We should be able to start and end a meeting in the
same hour.

if(mStart >= mEnd){

throw new TimeConflictException("Meeting starts before it

ends.");

}

12

What Other Faults Did You Find?

13

