
Exercise 4: Structural Testing

Gregory Gay
DIT635 - February 21, 2020



2

Finish In-Class Activities First!



The Planning System Returns
• Code on Canvas:

• https://canvas.gu.se/courses/25762/fi
les/folder/Misc?preview=2280199 

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book 
rooms or employees for meetings.

• System to manage schedules and 
meetings.

3

https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199
https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199


2018-08-27 Chalmers University of Technology 4

Structural Testing
• You already tested this system based on the 

functionality. Now we want to fill in the gaps.
• Goal: 100% Statement Coverage (Line Coverage) 

of all classes except Main.
• First, measure coverage of your existing tests
• Then, fill in any gaps with additional tests targeting the 

missed code.
• If code cannot be covered, identify why.
• If you finish early, also do this for the CoffeeMaker



5

Measuring Coverage
• The easiest way: use an IDE plug-in.

• Eclipse: EclEmma - https://www.eclemma.org/ 
• IntelliJ: IntelliJ IDEA code coverage runner: 

https://www.jetbrains.com/help/idea/code-coverage.html 
• Command line: 

• Emma, Cobertura offer executable tools.
• JaCoCo available as a Maven plug-in: 

https://medium.com/capital-one-tech/improve-java-code-
with-unit-tests-and-jacoco-b342643736ed 

https://www.eclemma.org/
https://www.jetbrains.com/help/idea/code-coverage.html
https://medium.com/capital-one-tech/improve-java-code-with-unit-tests-and-jacoco-b342643736ed
https://medium.com/capital-one-tech/improve-java-code-with-unit-tests-and-jacoco-b342643736ed



