
DIT635 - Mutation Testing Exercise

First, if you have not finished the activity from Lecture 12 (Mutation Testing), do so!

In a previous exercise, you wrote unit tests for a Meeting Planner system based on both the
functionality and code structure. We will not return to the Meeting Planner one last time to
assess the sensitivity of your test cases to seeded faults in the code.

1. Generate at least four mutants for classes of your choice in the MeetingPlanner code.
a. You must create at least one invalid, one valid-but-not-useful (non-equivalent),

one useful, and one equivalent mutant.
b. Each mutant must be created by applying a different mutation operator, and you

must use at least one mutation operator from each of the three categories in the
attached handout.

c. You do not have to use the same classes or methods for all mutant categories.
Try mutating different parts of the code.

2. Assess your test suite that you created in previous exercises, with respect to the set of
mutants that you derived - Are you able to kill all of the non-equivalent mutants with your
test suite? If not, write additional tests that can kill those non-equivalent mutants.

3. Identify a minimal subset of tests from your test suite that is sufficient to kill all of the
non-equivalent mutants.

If you finish early, try adding mutations to the CoffeeMaker classes from Homework Assignment
1. Do your unit tests detect those mutations?

318 Fault-Based Testing

ID Operator Description Constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 C1 �= C2
scr scalar for constant replacement replace constant C with scalar variable X C �= X
acr array for constant replacement replace constant C with array reference

A[I]
C �= A[I]

scr struct for constant replacement replace constant C with struct field S C �= S
svr scalar variable replacement replace scalar variable X with a scalar

variable Y
X �= Y

csr constant for scalar variable replacement replace scalar variable X with a constant
C

X �= C

asr array for scalar variable replacement replace scalar variable X with an array
reference A[I]

X �= A[I]

ssr struct for scalar replacement replace scalar variable X with struct field
S

X �= S

vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant

C
A[I] �= C

sar scalar for array replacement replace array reference A[I] with scalar
variable X

A[I] �= X

cnr comparable array replacement replace array reference with a compara-
ble array reference

sar struct for array reference replacement replace array reference A[I] with a struct
field S

A[I] �= S

Expression Modifications
abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator ψ with arith-

metic operator φ
e1ψe2 �= e1φe2

lcr logical connector replacement replace logical connector ψ with logical
connector φ

e1ψe2 �= e1φe2

ror relational operator replacement replace relational operator ψ with rela-
tional operator φ

e1ψe2 �= e1φe2

uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select
test cases that distinguish generated mutants from the original program.

