
Exercise 5: Mutation Testing

Gregory Gay
DIT635 - February 28, 2020



2

Finish In-Class Activity First!



The Planning System Returns
• Code on Canvas:

• https://canvas.gu.se/courses/25762/fi
les/folder/Misc?preview=2280199 

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book 
rooms or employees for meetings.

• System to manage schedules and 
meetings.

3

https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199
https://canvas.gu.se/courses/25762/files/folder/Misc?preview=2280199


2018-08-27 Chalmers University of Technology 4

Mutate the Meeting Planner
• Create at least four mutants for classes from the 

MeetingPlanner system.
• Create at least one from each category: 

• invalid (doesn’t compile)
• valid-but-not-useful (compiles, fails for any test case)
• useful 
• equivalent (no test will ever fail)

• Use different operators for each mutant
• 1+ from each category in handout.

• Try mutating different parts of the code.



5

Assess Your Test Cases
• Run the functional and structural tests you created 

previously. Do they detect the mutants?
• If not, create new test cases that will detect them.
• If equivalent, make sure you understand why the mutant 

will never be detected.
• Identify the minimal set of your tests that will detect 

all four mutants.
• If you finish quickly, try this for the CoffeeMaker.

• (part of Assignment 3)




