
Lecture 1: Software Quality,
Verification, and Validation

Gregory Gay
DIT635 - January 22, 2020

2018-08-27 Chalmers University of Technology 2

Today’s Goals
Introduce The Class
● AKA: What the heck is going on?
● Go over syllabus
● Clarify course expectations
● Assignments/grading
● Answer any questions
● Introduce the idea of “quality”
● Cover the basics of verification and validation

3

When is software ready for release?

Our Society Depends on Software
This is software: So is this:

 Also, this:

 4

Flawed Software Will Hurt Profits
“Bugs cost the U.S. economy $60 billion annually…
and testing would relieve one-third of the cost.”

- NIST

“Finding and fixing a software problem after delivery is
often 100 times more expensive than finding and fixing
it before.”

- Barry Boehm (TRW Emeritus Professor, USC)
5

Flawed Software Will Be Exploited

6

Flawed Software Will Hurt People
In 2010, software faults were responsible
for 26% of medical device recalls.

“There is a reasonable probability that use
of these products will cause serious
adverse health consequences or death.”
- US Food and Drug Administration

7

This Course
• What is “good” software?

• Quality Attributes and Measurement
• How do we assess quality?

• The key to good software?
• Verification and Validation

• Does the software do what we promised?
• Does the software meet the needs of its users?
• In this course, we will explore the testing and analysis activities

that make up the V&V process.

8

Desired Course Outcomes
Knowledge and understanding
● Explain quality assurance models in software engineering and the contents of

quality assurance plans

● Describe the distinction between verification and validation

● Name and describe the basic concepts on testing, as well as different testing
techniques and approaches

● Describe connection between development phases and kinds of testing

● Exemplify and describe a number of different test methods, and be able to use them
in practical situations

● Exemplify and describe tools used for testing software, and be able to use them and
interpret their output

9

10

Desired Course Outcomes
Competence and skills
● Describe the area of formal verification in general, including model

checking and runtime verification, and its relationship to software quality
● Define metrics or monitoring quality of projects, products and processes
● Construct appropriate and meaningful test cases, and interpret and explain

(to stakeholders) the results of the application of such test cases (using
appropriate tools) to practical examples

● Write models in at least one formal specification language plan and
produce appropriate documentation for testing

● Apply different testing techniques on realistic examples

11

Desired Course Outcomes
Judgement and approach
● Identify emerging techniques and methods for

quality management using relevant sources
● Identify and hypothesize about sources of program

failures, and reflect on how to better verify the
correctness of such programs

Lecture Plan (approximate)
• Introduction and Fundamentals (Lecture 1)
• Quality (Lectures 2-4: Dependability, Performance,

Scalability, Security)
• Testing (Lectures 5-14)

• Fundamentals
• Unit Testing
• Functional Testing
• Structural Testing

12

● Integration Testing
● UI Testing
● Acceptance Testing
● Regression Testing
● Model-Based Testing

Contact Info
• Instructor: Greg Gay (Dr, Professor, $#*%)

• E-mail: ggay@chalmers.se
• Office: 481 Jupiter

• No formal office hours, but feel free to stop by (e-mail first)
• Website:

• https://canvas.gu.se/courses/25762
• Pay attention to the schedule/announcements

• https://greg4cr.github.io/courses/spring20dit635
• Backup of Canvas page/course materials.
• Likely out of date, but back-up if Canvas isn’t working.

13

mailto:ggay@chalmers.se
https://canvas.gu.se/courses/25762
https://greg4cr.github.io/courses/spring20dit635

14

Teaching Team
• Teaching Assistants

• Mohamad Drgham (gusdrgmo@student.gu.se)
• George Sarkisian (sakogeorge@gmail.com)

• Student Representatives
• You? E-mail ggay@chalmers.se if you want to volunteer.

mailto:gusdrgmo@student.gu.se
mailto:sakogeorge@gmail.com
mailto:ggay@chalmers.se

Course Literature

• Software Testing and Analysis,
Mauro Pezze and Michal Young.
• Free copy from

https://ix.cs.uoregon.edu/~michal/b
ook/free.php

• Gives more information on many of
the topics covered

15

https://ix.cs.uoregon.edu/~michal/book/free.php
https://ix.cs.uoregon.edu/~michal/book/free.php

Prerequisite Knowledge
• You need to be proficient in Java

• (and, ideally, have some knowledge of C/C++)
• You should have basic understanding of build systems

and continuous integration
• We will go over specifics later, so don’t worry.

• You need a basic understanding of logic and sets.
• Formal verification based on logical arguments.

16

Course Design
 Lectures (Wed 8:15-10:00, Friday 10:15-12:00)

Exercise Sessions
(Friday, 13:15-15:00) Group Assignments

17

18

Examination Form
Sub-Courses
• Written examination (Skriftlig tentamen), 4.5 higher

education credits
• Grading scale: Pass with Distinction (VG), Pass (G) and

Fail (U)
• Assignments (Inlämningsuppgifter), 3 higher

education credits
• Grading scale: Pass (G) and Fail (U)

19

Assessment
• Individual hall exam at end of course
• Written assignments in teams of three.

• You may choose your own team.
• E-mail names + email addresses to ggay@chalmers.se
• E-mail me if you want to be assigned to a team.

• Three written assignments.
• Equally weighted.
• Final grade is average of three assignment grades.

mailto:ggay@chalmers.se

20

Assessment
• Self and peer-evaluation due with each assignment

• May be used to adjust individual assignment grades.
• AKA: don’t slack off!

• Late assignments, -20% per day, 0% after two days
• If final assignment average is failing, all three

assignments must be redone/resubmitted.

21

Grading Scale
• Assignments: Pass (G), Fail (U)
• Exam: Pass w/ Distinction (VG), Pass (G), Fail (U)

Expected Workload
This class can be time consuming.
• Understanding the material takes time.
• Project work requires team coordination.

Do not underestimate the project work.
• Good engineering is hard.
• Planning and scheduling your time is essential.
• Do NOT delay getting started.
• Appoint a team leader (and rotate the role)

22

Feedback
Problems with assignments, course questions,
feedback?
• Contact me! I like feedback!
• Feel free to talk to course reps + TAs too.
• I’m new here - I will make mistakes.

Contact student_office.cse@chalmers.se for questions
related to the course administration
• registration, signup, grades in LADOK.

23

mailto:student_office.cse@chalmers.se

Other Policies
Integrity and Ethics:
Homework and programs you submit for this class must be entirely your own. If
this is not absolutely clear, then contact me. Any other collaboration of any type
on any assignment is not permitted. It is your responsibility to protect your work
from unauthorized access.

Classroom Climate:
All students are expected to behave as scholars at a leading institute of
technology. Arrive on time, don’t talk during lecture, don’t leave before the end
of lecture. Disruptive students will be warned and dismissed.

24

Other Policies
Diversity
Students in this class are expected to respectfully work with all other students,
regardless of gender, race, sexuality, religion, etc. There is a zero-tolerance
policy for any student that discriminates against other students.

Special Needs
We will provide reasonable accommodations to students that have disabilities
that may affect their ability to participate in course activities or to meet course
requirements. Students with disabilities should contact their instructor early in
the semester to discuss their individual needs.

25

26

Let’s take a break!

27

When is software ready for release?

28

The short (and not so simple) answers...

• We release when we can’t find any bugs…
• We release when we have finished testing…
• We release when quality is high...

29

Software Quality
• We all want high-quality software.
• We don’t all agree on the definition of quality.
• Quality encompasses both what the system does

and how it does it.
• How quickly it runs.
• How secure it is.
• How available its services are.
• How easy it is to modify.

• Quality is hard to measure and assess objectively.

30

Quality Attributes
• Quality attributes describe desired properties of the

system under development.
• Developers must prioritize quality attributes and

design a system that meets chosen thresholds.
• Most relevant for this course: dependability

• The ability of the system to consistently offer correct
functionality, even under unforeseen or unsafe
conditions.

Quality Attributes
• Performance

• The ability of a system to meet timing requirements.
When events occur, the system must respond quickly.

• Security
• The ability of a system to protect information from

unauthorized access while providing service to
authorized users.

• Scalability
• The ability to “grow” the system to process an increasing

number of concurrent requests.
31

Quality Attributes
• Availability

• The ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.

• Modifiability
• The ability to enhance software by fixing issues, adding

features, and adapting to new environments.
• Testability

• The ability to easily identify faults in a system. The
probability that a fault will result in a visible failure.

32

Quality Attributes
• Interoperability

• The ability of the software to exchange information with
and provide functionality to other systems.

• Usability
• The ability of the software to enable users to perform

desired tasks and provide support to users.
• How easy is it to use the system, learn its features, adapt

the system to meet user needs, and increase confidence
and satisfaction in system use?

33

34

Other Quality Attributes
● Resilience
● Supportability
● Portability
● Development Efficiency
● Time to Deliver
● Tool Support
● Geographic Distribution

35

Quality Attributes
• These qualities often conflict. It is hard to achieve

multiple qualities at once.
• Using fewer subsystems improves performance, but hurts

modifiability.
• Introducing redundant data improves availability, but makes security

more difficult.
• Localizing safety-related features usually introduces more

communication between subsystems, degrading performance.
• Important to decide what is important, and set a

threshold on when it is “good enough”.

When is Software Ready for Release?
Software is ready for release when you can argue
that it is dependable.
• Correct, reliable, safe, and robust.
• The primary process of making software

dependable (and providing evidence of
dependability) is Verification and Validation.

36

Verification and Validation
Activities that must be performed to consider the
software “done.”
• Verification: The process of proving that the

software conforms to its specified functional and
non-functional requirements.

• Validation: The process of proving that the
software meets the customer’s true requirements,
needs, and expectations.

37

Verification and Validation
Barry Boehm, inventor of the term “software
engineering”, describes them as:

• Verification:
• “Are we building the product right?”

• Validation:
• “Are we building the right product?”

38

Verification
• Is the implementation consistent with its

specification?
• “Specification” and “implementation” are roles.

• Source code and requirement specification.
• Detailed design and high-level architecture.
• Test oracle and requirement specification.

• Verification is an experiment.
• Does the software work under conditions we set?
• We can perform trials, evaluate the software, and provide

evidence for verification.
39

Validation
• Does the product work in the real world?

• Does the software fulfill the users’ actual requirements?
• Not the same as conforming to a specification.

• If we specify and implement all behaviors related to two
buttons, we can achieve verification.

• If the user expected a third button, we have not achieved
validation.

40

Verification and Validation
• Verification

• Does the software work as intended?
• Validation

• Does the software meet the needs of your users?
• This is much harder.

Validation shows that software is useful. Verification
shows that it is dependable. Both are needed to be
ready for release.

41

Verification and Validation: Motivation
• Both are important.

• A well-verified system might not meet the user’s needs.
• A system can’t meet the user’s needs unless it is

well-constructed.
• This class largely focuses on verification.

• How can we ensure that the software we build is
dependable.

• Testing is the primary activity of verification, and our main
focus in this class.

42

Required Level of V&V
The goal of V&V is to establish confidence that the
system is “fit for purpose.”
How confident do you need to be? Depends on:

• Software Purpose: The more critical the software, the more important that
it is reliable.

• User Expectations: When a new system is installed, how willing are users
to tolerate bugs because benefits outweigh cost of failure recovery.

• Marketing Environment: Must take into account competing products -
features and cost - and speed to market.

43

Basic Questions
1. When do verification and validation start? When are

they complete?
2. What techniques should be applied to obtain acceptable

quality at an acceptable cost?
3. How can we assess readiness for release?
4. How can we control the quality of successive releases?
5. How can the development process be improved to

make verification more effective (in cost and impact)?

44

When Does V&V Start?
• V&V starts as soon as the project starts.
• Feasibility studies must consider quality assessment.
• Requirement specifications can be used to derive test

cases.
• Design can be verified against requirements.
• Code can be verified against design and requirements.
• Feedback can be sought from stakeholders at any time.

45

Types of Verification
Static Verification
• Analysis of system artifacts to discover problems.

• Proofs: Posing hypotheses and making a logical
argument for their validity using specifications, system
models, etc.

• Inspections: Manual “sanity check” on artifacts (such as
source code) by other people or tools, searching for
issues.

46

Advantages of Static Verification
• During execution, errors can hide other errors. Hard to

find all problems or trace back to a single source.
• Inspections not impacted by program interactions.

• Incomplete systems can be inspected without additional
costs. If a program is incomplete, special code is
needed to run the part that is to be tested.

• Inspection can also assess quality attributes such as
maintainability, portability, poor programming,
inefficiencies, etc.

47

Dynamic Verification
• Exercising and observing the system to argue that it

meets the requirements.
• Testing: Formulating controlled sets of input to

demonstrate requirement satisfaction or find faults.
• Fuzzing: Spamming the system with random input to

locate security vulnerabilities, memory leaks, buffer
overruns, etc.

• Taint Analysis: Assigning a bad value to a variable and
monitoring which system variables it corrupts and how it
corrupts them.

48

Dynamic Verification
• Static verification is not good at discovering

problems that arise from runtime interaction, timing
problems, or performance issues.

• Dynamic verification is often cheaper than static -
easier to automate.
• However, it cannot prove that properties are met - cannot

try all possible executions.

49

The Trade-Off Game
Software engineering is the process of designing,
constructing and maintaining the best software
possible given the available resources.
We are always trading off between what we want, what
we need, and what we've got.
As a NASA engineer put it,
• “Better, faster, or cheaper - pick any two”

50

The Role of Software Engineers
Software engineers aren’t just responsible for
designing, constructing, and maintaining software.

They are the people we look to plan, make, and
justify well-informed decisions about trade-offs
throughout the development process.

51

Perfect Verification
• For physical domains, verification consists of

calculating proofs of correctness.
• Given a precise specification and a program, we

should be able to do the same… Right?
• Verification is an instance of the halting problem.
• There is at least one program for which any technique

cannot obtain an answer in finite time.
• Testing - cannot exhaustively try all inputs.

• We must accept some degree of inaccuracy.

52

Verification Trade-Offs
Three dimensions of inaccuracy:

• Pessimistic Inaccuracy - not guaranteed to
accept a program even if the program
possesses the property.

• Optimistic Inaccuracy - may accept a
program that does not possess a property.

• Property Complexity - if one property is too
difficult to check, substitute one that is easier to
check or constrain the types of programs
checked.

53

Assessing Verification Techniques
• Safe

• No optimistic inaccuracy - it only accepts programs that are
correct with respect to that property.

• Sound
• An analysis of a program with respect to property is sound if

the technique returns true ONLY when the program does meet
the property.

• If true = correct and the technique is sound, then the technique
is also safe.

• If true = incorrect and the technique is sound, you allow
optimistic but disallow pessimistic inaccuracy.

54

Assessing Verification Techniques
• Complete

• An analysis of a property on a program is complete if
it always returns true when the program does satisfy
the program.

• If true = correct, then complete admits only optimistic
inaccuracy.

• Often a trade-off between safe, sound, and
complete.

55

How Can We Assess Readiness?
• Identifying faults is useful, but finding all faults is

nearly impossible.
• Instead, need to decide when to stop verification

and validation.
• Need to establish criteria for acceptance.

• How good is “good enough”?
• One option is to measure dependability (availability,

mean time between failures, etc) and set a
“acceptability threshold”.

56

Product Readiness
• Another option is to put it in the hands of human

users.
• Alpha/Beta Testing - invite a small group of users to

start using the product, have them report feedback
and faults. Use this to judge product readiness.
• Can make use of dependability metrics for a quantitative

judgement (metric > threshold).
• Can make use of surveys as a qualitative judgement (are

the users happy with the current product?)
57

Ensuring Quality of Successive Releases
• Verification and validation do not end with the

release of the software.
• Software evolves - new features, environmental

adaptations, bug fixes.
• Need to test code, retest old code, track changes.

• Faults have not always been fixed before release.
Do not forget those.
• Regression Testing - when code changes, rerun tests to

ensure that it still works.
• As faults are repaired, add tests that exposed them to the suite.

58

Improving the Development Process
• Try to learn from your mistakes in the next project.
• Collect data during development.

• Fault information, bug reports, project metrics (complexity,
classes, # lines of code, test coverage, etc.).

• Classify faults into categories.
• Look for common mistakes.
• Learn how to avoid such mistakes.
• Share information within your organization.

59

60

We Have Learned
• Quality attributes describe desired properties of the

system under development.
• Dependability, scalability, performance, availability,

security, maintainability, testability, ...
• Developers must prioritize quality attributes and

design a system that meets chosen thresholds.
• Quality is often subjective. Choose a definition, and

offer objective thresholds.

We Have Learned
• Software should be dependable and useful

before it is released into the world.
• Verification is the process of demonstrating that

an implementation meets its specification.
• This is the primary means of making

software dependable (and demonstrating
dependability).

• Testing is most common form of verification.
61

We Have Learned
• Verification can be static or dynamic.

• Pessimistically or optimistically inaccurate
• Level of inaccuracy can be controlled by

simplifying properties.
• Desire safe, sound, and complete.

• Obtaining one often involves losing other.

62

Next Time
• More on quality

• Quality Scenarios (high-level test scenarios)
• Measuring and assessing dependability

• Plan your team selection.
• The earlier, the better! Due January 30, 11:59 PM.
• Three people, e-mail names/e-mails/team name to

ggay@chalmers.se
• Let me know if you want assigned to a team.

63

mailto:ggay@chalmers.se

