
Lecture 10: Testing Near and
Post-Release
(and completion of Data Flow Analysis)
Gregory Gay
DIT635 - February 21, 2020

2018-08-27 Chalmers University of Technology 2

Today’s Goals
• Finish Data Flow Analysis (from last time)
• Testing activities as we near release (and after):

• Acceptance Testing: Giving users the system
• Regression Testing: Ensuring re-designed code still

works.

3

Data Flow Analysis

Reachability
• Def-Use pairs describe paths through the program’s

control flow.
• There is a (d,u) pair for variable V only if at least one path

exists between d and u.
• If this is the case, a definition Vd reaches u.

• Vd is a reaching definition at u.
• If the path passes through a new definition Ve, then Ve

kills Vd.

4

Computing Def-Use Pairs
• One algorithm: Search the CFG for

paths without redefinitions.
• Not practical - remember path

coverage?
• Instead, summarize the reaching

definitions at a node over all paths
reaching that node.

x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..

5

Computing Def-Use Pairs
• If we calculate the reaching definitions of node n,

and there is an edge (p, n) from an immediate
predecessor node p.
• If p can assign a value to variable v, then definition vp

reaches n.
• vp is generated at p.

• If a definition vd reaches p, and if there is no new
definition, then vd is propagated from p to n.

• If there is a new definition, vp kills vd and vp propagates to n.

6

P
V= ...

N
Za Vp, Za

Computing Def-Use Pairs
• The reaching definitions

flowing out of a node
include:

• All reaching definitions
flowing in.

• Minus definitions that are
killed.

• Plus definitions that are
generated.

x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..

xa, ya, za

xa, yc, zc xb, ya, zb

xb, ya, zb, xa, yc, zc, wd

7

Flow Equations
• As node n may have multiple predecessors, we

must merge their reaching definitions:
• ReachIn(n) = ⋃p∈pred(n) ReachOut(p)

• The definitions that reach out are those that reach
in, minus those killed, plus those generated.
• ReachOut(n) = (ReachIn(n) \ kill(n)) ⋃ gen(n)

8

Computing Reachability
• Initialize

• ReachOut is empty for every node.
• Repeatedly update

• Pick a node and recalculate ReachIn, ReachOut.
• Stop when stable

• No further changes to ReachOut for any node
• Guaranteed because the flow equations define a

monotonic function on the finite lattice of possible sets of
reaching definition.

9

Iterative Worklist Algorithm
• Input:

• A control flow graph G
= (nodes, edges)

• pred(n)
• succ(n)
• gen(n)
• kill(n)

• Output:
• ReachIn(n)

for(n ∈ nodes){
ReachOut(n) = {};

}
workList = nodes;
while(workList != {}){

n = a node from the workList;
workList = workList \ {n};
oldVal = ReachOut(n);
ReachIn(n) = ⋃p∈pred(n) ReachOut(p);
ReachOut(n) = (ReachIn(n) \

 kill(n)) ⋃ gen(n);
if(ReachOut != oldVal){

workList = workList ⋃ succ(n);
}

}

Initialize the reaching
definitions flowing out to
an empty set.Keep a worklist of nodes
to be processed.
At each step remove an
element from the worklist
and process it.Calculate the flow
equations.

If the recalculated value is
different for the node add its
successors to the worklist.

10

Can this algorithm work for other analyses?
• ReachIn/ReachOut are flow equations.

• They describe passing information over a graph.
• Many other program analyses follow a common pattern.

• Initialize-Repeat-Until-Stable Algorithm
• Would work for any set of flow equations as long as the

constraints for convergence are satisfied.

• Another problem - expression availability.

11

Available Expressions
• When can the value of a subexpression be saved

and reused rather than recomputed?
• Classic data-flow analysis, often used in compiler.

• Can be defined in terms of paths in a CFG.
• An expression is available if - for all paths through

the CFG - the expression has been computed and
not later modified.
• Expression is generated when computed.
• … and killed when any part of it is redefined.

12

Available Expressions
• Like with reaching, availability can be described

using flow equations.
• The expressions that become available (gen set)

and cease to be available (kill set) can be
computed simply.

• Flow equations:
• AvailIn(n) = ⋂p∈pred(n) AvailOut(p)

• AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃ gen(n)
13

Iterative Worklist Algorithm
• Input:

• A control flow
graph G = (nodes,
edges)

• pred(n)
• succ(n)
• gen(n)
• kill(n)

• Output:
• AvailIn(n)

for(n ∈ nodes){
AvailOut(n) = set of all expressions

 defined anywhere;
}
workList = nodes;
while(workList != {}){

n = a node from the workList;
workList = workList \ {n};
oldVal = AvailOut(n);
AvailIn(n) = ⋂

p∈pred(n)
 AvailOut(p)

AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃
 gen(n);

if(AvailOut != oldVal){
workList = workList ⋃ succ(n);

}
}

14

Analysis Types
• Both reaching definitions and expression availability

are calculated on the CFG in the direction of
program execution.
• They are forward analyses.
• Other analyses backtrack from exit to entrance

(backwards analyses).

15

Analysis Types
• Definitions can reach across any path.

• The in-flow equation uses a union.
• This is a forward, any-path analysis.

• Expressions must be available on all paths.
• The in-flow equation uses an intersection.
• This is a forward, all-paths analysis.

16

Forward, All-Paths Analyses
• Encode properties as tokens that are generated

when they become true, then killed when they
become false.
• The tokens are “used” when evaluated.

• Can evaluate properties of the form:
• “G occurs on all execution paths leading to U, and there

is no intervening occurrence of K between G and U.”
• Variable initialization check:

• G = variable-is-initialized, U = variable-is-used
• K = variable-is-uninitialized (kill set is empty)

17

Backward Analysis - Live Variables
• Tokens can flow backwards as well.
• Backward analyses are used to examine what

happens after an event of interest.
• “Live Variables” - analysis to determine whether the

value held in a variable may be used.
• A variable may be considered live if there is any possible

execution path where it is used.

18

Live Variables
• A variable is live if its current value may be used

before it is changed.
• Can be expressed as flow equations.

• LiveIn(n) = ⋃p∈succ(n) LiveOut(p)

• Calculated on successors, not predecessors.
• LiveOut(n) = (LiveIn(n) \ kill(n)) ⋃ gen(n)

• Worklist algorithm can still be used, just using
successors instead of predecessors.

19

Backwards, Any-Paths Analyses
• General pattern for backwards, any-path:

• “After D occurs, there is at least one execution path on
which G occurs with no intervening occurrence of K.”

• D indicates a property of interest. G is when it becomes true. K is
when it becomes false.

• Useless definition check, D = variable-is-assigned, G =
variable-is-used, K = variable-is-reassigned.

20

Backwards, All-Paths Analyses
• Check for a property that must inevitably become

true.
• General pattern for backwards, all-path:

• “After D occurs, G always occurs with no intervening
occurrence of K.”

• Informally, “D inevitably leads to G before K”
• D indicates a property of interest. G is when it becomes true. K is

when it becomes false.
• Ensure interrupts are reenabled, files are closed, etc.

21

Analysis Classifications
Any-Paths All-Paths

Forward (pred) Reach

U may be preceded by G
without an intervening K

Avail

U is always preceded by
G without an intervening K

Backward (succ) Live

D may lead to G before K

Inevitability

D always leads to G
before K

22

Crafting Our Own Analysis
• We can derive a flow analysis from run-time

analysis of a program.
• The same data flow algorithms can be used.

• Gen set is “facts that become true at that point”
• Kill set is “facts that are no longer true at that point”
• Flow equations describe propagation

23

Monotonicity Argument
• Constraint: The outputs computed by the flow

equations must be monotonic functions of their
inputs.

• When we recompute the set of “facts”:
• The gen set can only get larger or stay the same.
• The kill set can only grow smaller or stay the same.

24

25

Let’s Take a Break

“Final” Testing Stages
• All concerned with behavior of the system as a

whole, but for different purposes.
• Acceptance Testing

• Validation against the user’s expectations.
• Regression Testing

• Ensuring that the system continues to work as expected
when it evolves.

26

Verification and Validation
Activities that must be performed to consider the
software “done.”
• Verification: The process of proving that the

software conforms to its specified functional and
non-functional requirements.

• Validation: The process of proving that the
software meets the customer’s true requirements,
needs, and expectations.

27

System and Acceptance Testing
• System Integration Testing

• Checks system against specification.
• Performed by developers and professional testers.
• Verifies correctness and completion of the product.

• Acceptance Testing
• Checks system against user needs.
• Performed by customers, with developer supervision
• Validates usefulness and satisfaction with the product.

28

Regression Testing
• Systems continue to evolve post-release.

• Patches to newly-discovered faults.
• New features.
• Adaptations to new hardware/software (OS).

• Rechecks test cases passed by previous
production systems.

• Guards against unintended changes.

29

30

Acceptance Testing

Acceptance Testing
Once the system is internally tested, it should be
placed in the hands of users for feedback.
• Users must ultimately approve the system.
• Many faults emerge when used in the wild.

• Alternative operating environments.
• More eyes on the system.
• Wide variety of usage types.

• Acceptance testing allows users to try the system
under controlled conditions.

31

User-Based Testing Types
• Alpha Testing

• A small group of users work closely with development
team to test the software.

• Beta Testing
• A release of the software is made available to a larger

group of interested users.
• Acceptance Testing

• Customers decide whether or not the system is ready to
be released.

32

Alpha Testing
• Users and developers work together.

• Users can identify problems not apparent to the
development team.

• Developers work from requirements, users have their own
expectations.

• Takes place under controlled conditions.
• Software is usually incomplete or untested.

• “Power users” and customers who want early
information about system features.

33

Beta Testing
• Early build made available to a larger group of

volunteers and customers.
• Software is used under uncontrolled conditions,

hardware configurations.
• Important if the system will be sold to any customer.
• Discovers interaction problems.

• Can be a form of marketing.
• Should not replace traditional testing.

34

Acceptance Testing
• Validation activity between developer and

customer.
• Software is taken to a group of users that try a set

of scenarios under supervision.
• Scenarios mirror the typical system use cases.
• Users provide feedback and decide whether the software

is acceptable for each scenario.
• Users ultimately decide whether the software is

ready for release.
• Developers may negotiate with users. 35

Acceptance Testing Stages
• Define acceptance criteria

• Work with customers to define how validation will be
conducted, and the conditions that will determine
acceptance.

• Plan acceptance testing
• Decide resources, time, and budget for acceptance

testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

36

Acceptance Testing Stages
• Derive acceptance tests.

• Design tests to check whether or not the system is
acceptable. Test both functional and non-functional
characteristics of the system.

• Run acceptance tests
• Users complete the set of tests. Should take place in the

same environment that they will use the software. Some
training may be required.

37

Acceptance Testing Stages
• Negotiate test results

• It is unlikely that all of the tests will pass the first time.
Developer and customer negotiate to decide if the system
is good enough or if it needs more work.

• Reject or accept the system
• Developers and customer must meet to decide whether

the system is ready to be released.

38

Qualitative Process
• Results may vary based on the user surveyed and

environmental factors.
• Software may need to be accepted regardless of users’

preferences if deadline is strict.
• May be used as an “excuse” to reject a project.

• Users should be “typical”
• Usually interested volunteers.
• How users interact with beta may not match real system.
• May not catch faults that normal users will see.

39

Usability
• A usable product is quickly learned, allows users to

work efficiently, and can be used without frustration.
• Must be evaluated through user-based testing.
• Objective criteria:

• Time and number of operations to perform tasks.
• Frequency of user error.

• Subjective criteria:
• Satisfaction of users.

• Can be evaluated throughout lifecycle.

40

Usability Testing Steps
• Inspecting specifications:
• Testing early prototypes:

• Bring in end users to:
• Explore mental models (exploratory testing)
• Evaluate alternatives (comparison testing)
• Validate usability.

• May involve mockup GUIs, not working software.
• System and Acceptance Testing:

• Evaluate incremental builds, compare against
competitors, check against compatibility guidelines.

41

Exploratory Testing
• Explore the mental model of end users.

• Early in design stage, ask users how they would like to
interact with the system.

• Look for common answers from users.
• If conflicts, try to combine elements of answers.
• Larger sample sizes will yield better results.
• Consider all groups of stakeholders.

• Some stakeholders will have different usage patterns from others.

42

Validation Testing
• Used to assess overall

usability.
• Identifies difficulties and

obstacles encountered while
using the system.

• Measures error rate,
clicks/time to perform a task.

43

Validation Testing
• Preparation phase:

• Define objectives for the session, identify items to be
tested, select population, plan actions.

• Execution phase:
• Users monitored as they execute planned actions.

• Analysis phase:
• Results evaluated, software changes planned.

44

Validation Testing
• Activities should be based on typical use cases of

expected features.
• Goal is to ensure “normal use” is optimal.

• Users should perform tasks independently.
• Actions are recorded through tracking software.
• Comments and impressions are collected with

post-activity questionnaires.
• Consider accessibility needs.

• Font size, color choices, audio guidance.
45

46

Let’s Take a Break

47

Regression Testing

Software Lifecycle

Specification Implementation

Verification &
ValidationOperation

R1R2R3R4

Initial
Development

Evolution

Servicing

Phaseout

48

Software Maintenance
• Fault Repairs

• Changes made in order to correct coding, design, or
requirements errors.

• Environmental Adaptations
• Changes made to accommodate changes to the

hardware, OS platform, or external systems.

• Functionality Addition
• New features are added to the system to meet new user

requirements.
49

Maintenance is Hard
It is harder to maintain than to write new code.
• Must understand code written by another

developer, or code that you wrote long ago.
• Creates a “house of cards” effect.
• Developers tend to prioritize new development.

New code must be tested. Existing code must also be
retested.

50

System Regression
• System evolution may change existing functionality

in unforeseen ways.
• When a new version no longer works as expected,

it regresses with respect to tested functionality.
• A basic quality requirement is that new versions are

non-regressive - if we tested it and it works, it should
continue to work.

• Regression testing used to detect regressive code.

51

Regression Testing
• Basic idea: when changes have been made,

re-execute tests used to verify the original code.
• Not as simple as it sounds:

• When do you execute regression tests?
• On check-in? Before patch is publicly released?

• Can you afford to execute all tests?
• The number will grow as the system expands.

• Can you actually execute all tests?
• Do you need to?
• Are some tests obsolete?

52

Test Case Maintenance
• Test suites must be maintained over time.
• Obsolete tests should be removed.

• Tests involving requirements, features, classes, or
interfaces that no longer exist or have been modified.

• Redundant tests should be identified.
• Tests that cover the same structural elements, input

partitions, other test goals.
• May be introduced to test changed code, or by

concurrently-working testers.
• Can still be executed, but may not be needed.

53

Regression Test Selection
• The number of tests to reexecute may be very large

(and grows over time).
• Not all tests need to be re-executed.

• Regression testing costs can be reduced by prioritizing
the set of test cases.

• Select a subset of tests relevant to the changes.
• Techniques based on code and specifications.

• Choose a cut-off based on testing budget.

54

Code-Based Test Selection
• Select a test case for execution if it exercises a

portion of the code modified.
• Control-based selection:

• Maintain a record of CFG nodes executed by each test.
• Compare the structure of the old and new versions.
• Tests that exercise added, modified, or deleted elements

are prioritized.
• Can be based on control or data flow.

55

Example
Version 1:

} else if (c == ‘%’){

int digit_high = ..

}

 …

++dptr;

++eptr;

}

Version 2:
} else if (c == ‘%’){

if(!*(eptr + 1) && *(eptr + 2)){
ok = 1; return;

}
int digit_high = ..

}
 …
if(! isascii(*dptr)){

*dptr = ‘?’; ok=1;
}
++dptr;
++eptr;
}

56

Example
A

B M

C

D E

F X: if(!*(eptr +
1) && *(eptr +
2)){

Y: ok = 1;
return;

G
H

I

W: if(!
isascii(*dptr)){

Z: *dptr =
‘?’; ok=1;

L

57

Example
A
B M
C
D E

F X Y
G H

I

W
Z

L

ID Input Path

1 “ “ A B M

2 “test+case%1Dadequacy” A B C D F L … B M

3 “adequate+test%0Dexecution%7
U”

A B C D F L … B M

4 “%3D” A B C D G H L B M

5 “%A” A B C D G I L B M

6 “a+b” A B C D F L B C E L B C D F
L B M

7 “test” A B C D F L B C D F L B C D
F L B M

8 “+%0D+%4J” A B C E L B C D G I L … B
M

9 “first+test%9Ktest%K9” A B C D F L … B M

Base case: Re-execute all tests
that pass through node D and
proceed towards G, and all
tests that reach node L.

Corrective Changes Only:
Ignores new features, and only
considers corrective patches.

58

Data-Based Test Selection
• New code can introduce new DU pairs and remove

existing pairs.
• Re-execute test cases that execute DU pairs in the

original program that were deleted or modified in
the revised program.
• Also select test cases that execute a conditional

statements modified in the revision.
• Changed predicates can affect DU paths.

59

Example
A
B M
C
D E

F X Y
G H

I

W
Z

L

Variable Definitions Uses

*eptr X

eptr X

*dptr Z W

dptr Z, W

ok Y, Z

60

Selective Execution
• When a regression suite is too large, we must

reduce the number of tests executed.
• Techniques predict “usefulness” of tests:

• Elements covered, history of effectiveness.
• High priority tests selected more than low priority.

• Eventually, all tests will be selected.
• However, at varying frequencies.
• Efficient rotation in which the cases most likely to reveal

faults will be selected more often.
61

Selective Execution Schema
• Execution History Schema:

• Simple strategy.
• Recently executed tests are given low priority.
• Cases not recently executed are given high priority.
• Often used along with correlation to changed elements.

• Fault-Revealing Priority Schema:
• Test cases that recently revealed faults are prioritized.
• Faults are not evenly distributed, but tend to cluster

around particular functionality/units in the code.
• Not all faults may have been fixed.

62

Selective Execution Schema
• Structural Priority Schema:

• Weight tests by the number of elements covered.
• Statements, branches, conditions, etc.

• Weight each element by when it was last executed.
• Prioritize tests that cover a large number of elements that

have not recently been executed.
• Ensures that all structural elements are eventually

recovered, especially if they have not recently been
tested.

63

We Have Learned
• Control-flow and data-flow both capture important

paths in program execution.
• Analysis of how variables are defined and then

used and the dependencies between definitions
and usages can help us reveal important faults.

• Many forms of analysis can be performed using
data flow information.

64

We Have Learned
• Analyses can be backwards or forwards.

• … and require properties be true on all-paths or any-path.
• Reachability is forwards, any-path.
• Expression availability is forwards, all-paths.
• Live variables are backwards, any-path.
• Inevitability is backwards, all-paths.

• Many analyses can be expressed in this framework.

65

We Have Learned
• Late-stage testing techniques are concerned with

behavior of the system as a whole, but for different
purposes.

• Acceptance Testing
• Validation against the user's expectations.

• Regression Testing
• Ensuring that the system continues to work as expected

when it evolves.

66

67

Next Time
• Exercise Session - Structural Testing

• Bring laptops, download Meeting Planner code.
• Integration Testing and Testing of OO Systems

• Reading: Pezze and Young, Chapters 15, 21, 22.2
• Assignment 2

• Due March 1!

