
Lecture 11: Integration Testing
and Testing of OO Systems

Gregory Gay
DIT635 - February 26, 2020

Integration Testing
• Most software works by combining multiple,

interacting components.
• In addition to testing components independently, we must

test their integration.
• Functionality performed across components is

accessed through a defined interface.
• Integration testing focuses on showing that functionality

accessed through this interface behaves according to the
specifications.

2

Integration Testing
We have a subsystem made up of
classes A, B, and C. We have
performed unit testing...

• They work together to perform functions.
• We apply test cases not to the individual

classes, but to the interface of the
combined subsystem they form.

• Errors in their combined behavior are not
caught by unit testing.

A

C

B

Test Cases

3

Object-Oriented Software
• Most software is designed as a collection of

interacting objects that model concepts in the
problem domain.
• Concrete concepts in the real world

• A driver’s license, an aircraft, a document…
• Logical concepts

• A scheduling policy, conflict resolution rules...

4

Object-Oriented Software
• What defines an object:

• Data representation
• Characteristics that define an object

(attributes).
• Functionality

• What the object can do (operations).

5

Person

name
age
address

sleep()
walk()
playGames()

Testing Object-Oriented Software
• Most of the techniques we have covered have been

introduced using non-OO examples (a single
procedure, multiple procedures within one class).

• These techniques work on OO systems…
• But, there are a few complications.
• Today - we will discuss these complications and factors

that must be considered in testing OO code.

6

7

Issues With Testing OO Systems

OO Testing Issues
• State Dependent Behavior
• Encapsulation
• Inheritance
• Polymorphism and Dynamic Binding
• Abstract Classes
• Exception Handling
• Concurrency

8

State Dependent Behavior
• Object behavior is stateful.

• An object stores data and operates using that data.
• The result of a method call depends on the state of the

object - the values of its attributes.
• We cannot test a method in isolation.

• Unit tests for classes in OO systems must put the object
in the correct state by setting attributes and calling a
sequence of methods.

9

State-Dependent Behavior
• The contents of the slots

determine the legality of
the model configuration.

• Are all components bound
to compatible slots?

• Result of
checkConfiguration()
depends on the state.

public class Model extends Orders.CompositeItem{
public String modelID;
private int baseWeight;
private int heightCm, widthCM, depthCM;
private Slot[] slots;
private boolean legalConfig = false;
private static final String NoModel = “NO

MODEL SELECTED”;

private void checkConfiguration(){
legalConfig = true;
for(int i=0; i< slots.length; ++i){

Slot slot = slots[i]
if(slot.required &&

! slot.isBound()){
legalConfig= false;

}
}

}
}

10

Encapsulation
• Classes may have public and

private members.
• Other objects must work with

public methods and
variables.

• To run a test, we may not be
able to put an object in
particular states.

• To check test results, we may
need access to private
information.

public class Model extends Orders.CompositeItem{
public String modelID;
private int baseWeight;
private int heightCm, widthCM, depthCM;
private Slot[] slots;
private boolean legalConfig = false;
private static final String NoModel = “NO

MODEL SELECTED”;

private void checkConfiguration(){
...

}

public boolean isLegalConfiguration(){
if(!legalConfig){

this.checkConfiguration();
}
return legalConfig;

}
}

11

Inheritance
• Child classes inherit

attributes and operations
from their parents.
• Allows the creation of

specialized versions of
classes without
reimplementing
functionality.

• All child objects are
instances of that class and
the parent class.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

12

Inheritance
• Inherited methods may not exhibit the same behavior in

children as they do in parent:
• Child may override the method with its own implementation.
• A method may depend on other parts of the class that have

changed.
• Can often establish that the method is truly unchanged and

does not need to be retested.
• If is has changed, it must be retested in the right context.

13

Polymorphism and Dynamic Binding
• The same operation may

behave differently when
used on different classes.

• We can redefine operations
in each related class.

• Because Shape defines an
area() method, we know all
children offer that method.

• But, we can redefine that
method in each child to offer
the right answer.

Shape
area()

Square
area()

Circle
area()

Triangle
area()

Because objects are instances
of both their class and their
parent class:

void getArea(Shape s){
System.out.println(s.area());

}
Gives the right answer if square,
circle, triangle, etc are passed.

14

Polymorphism and Dynamic Binding
• Behavior depends on the object

assigned at runtime.
• If LineItem.getUnitPrice() is

called, it may actually be
SimpleItem.getUnitPrice().

• Wrong object might be bound to
the variable.

• May be difficult to tell which class
has the fault.

• Fault may be a result of a
combination of bindings.

• Testing one possible binding is not
enough - must try multiple bindings.

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

Abstract Classes
• Classes that are incomplete

and cannot be instantiated.
• LineItem

• Define templates for other
classes to follow.

• These still must be tested in
some form.

• Can test all of the child classes.
• Techniques for testing what is

declared in the abstract class.

16

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

Exceptions
• Used to handle erroneous

execution conditions.
• Either handled directly in

code, or declared in method
header.

• Where an exception is
caught and where it is
handled differ.

• Impacts control-flow

try{
BufferedReader br = new

BufferedReader(
new File(“input.txt”));

String line = br.readLine();
catch(IOException e){

e.printStackTrace();
}

public int tryThis()
throws NullPointerException{
...

}

17

Concurrency
• A program can be designed to execute over

multiple, concurrently-executing processes.
• Introduces new sources of failure:

• Deadlock, race conditions, timing of data synchronization.
• System is dependent on scheduler decisions that a

tester cannot control.

18

19

Approaches to Testing OO Systems

The V-Model of Development
Requirement
s Elicitation

System
Specification

Architectural
Design

Detailed
Design

Unit
Development
and Testing

Subsystem
Integration

Testing

System
Integration

Testing

Acceptance
Testing

Operation
and

Maintenance

Acceptance
Test Plan
System

Integration
Test Plan

Subsystem
Integration
Test Plan

Unit Test
Plan

Intraclass Testing:
Testing one class in
isolation.

Interclass Testing:
Testing groups of
classes.

20

21

Intraclass Testing (single-class)

Unit Testing
• Unit testing is the process of testing the smallest

isolated “unit” that can be tested.
• Allows testing to begin as code is written.
• Allows testing of system components in isolation from

other components.
• Before the system is built, each component should

work in isolation.
• Usually in OO, a unit is a class.

• Individual methods depend on and modify object state
and are dependent on other methods.

22

Intraclass Testing
To test a class in isolation, we:
1. If the class is abstract, derive a set of instantiations

to cover significant cases.
2. Design test cases to check correct invocation of

inherited and overridden methods.
3. Design a set of test cases based on the states that

the class can be put into.
• Think of the class as a state machine model.

23

Intraclass Testing
4. Derive structural information from the source code

and cover the code structure of the class.
5. Design test cases for exception handling.

a. Exercising exceptions that should be thrown by methods
in the class and exceptions that should be caught and
handled by them.

6. Design test cases for polymorphic calls.
a. Calls to superclass or interface methods that can be

bound to different subclass objects.
24

25

Classes as State Machines
• The current value of the class-level

variables defines the state of the class.
• Combination of values of model,

component, and required.
• The values of these variables influence the results

of a method call.
• isBound() returns true if component is not null.

• Values change as a result of method calls.
• bind(Component) changes the value of component.

Slot

model: Model
component: Component
required: boolean

incorporate(Model)
bind(Component)
unbind()
isBound()

Classes as State Machines
• The state of an object implicitly impacts the result of

a method call, and is changed by method calls.
• Unit tests should attempt to cover the states of an object

and transitions between those states.
• Each unit test:

• Consists of a series of method calls.
• Should ensure that methods return the right result.
• Should ensure that class-level attributes are set correctly (Is the

class in the desired state?)

26

Finite State Machines
• A directed graph.
• Nodes represent states

• An abstract description of the current
value of an entity’s attributes.

• Should not represent exact values, but types of values.
• (not 13, but “positive”).

• Edges represent transitions between states.
• Method calls cause the state to change.
• Transitions represent method calls that change the state.

27

Using State Machine Models
• We can identify method call sequences by covering

a state machine model.
• Map how method calls and attribute assignment can

force the object into different states.
• Sequence of transitions = sequence of method calls
• Exercising that sequence should put the class into the the

desired state.
• (and cover different means of reaching those states)

28

Informal Specification
Slot represents a configuration choice in all instances of a particular model of
computer. A given model may have zero or more slots, each of which is marked
as required or optional. If a slot is marked as required, it must be bound to a
suitable component in all legal configurations. Slot offers the following services:

• Incorporate: Make a slot part of a model, and mark it as either required or
optional. All instances of a model incorporate the same slots.

• Bind: Associate a compatible component with a slot.
• Unbind: The unbind operation breaks the binding of a component to a slot,

reversing the effect of a previous bind operation.
• IsBound: Returns true if a component is currently bound to a slot, or false

if the slot is currently empty.

29

… To State Machine

• Do not derive too many states.
• Map variables to abstract values, not a state for each

possible combination of values.
• Model how a method affects a class.

• States only need to capture interactions between
methods and the class state.

No Model No Component
Bound

Component
Bound

incorporate bind

unbind

unbind

isBound

isBound

30

Test Coverage

• Tests should cover all states and transitions.
• Do not do this in one test.
• Split into smaller, targeted paths.

• TC1: incorporate, isBound, bind, isBound
• TC2: incorporate, unBind, bind, unBind, isBound

No Model No Component
Bound Bound

incorporate bind

unbind

unbind

isBound

isBound

31

Example - Model
Model represents the current configuration of a model of computer.
• A given model may have zero or more slots, each of which is

marked as required or optional.
• Each slot may contain a single component.
• To be a legal model, the model ID must exist in the ModelDB, each

slot marked as required must be filled, the configuration must
match that of the ModelDB entry for the model ID, and the optional
components must match those allowed for that model in the
ModelDB.

32

Example - Model
● selectModel(modelId): Sets the model ID to the value passed in, as long as the

model ID is set to “no model selected”. A model ID must be set before any other
services are requested.

● deselectModel(): Sets the model ID to “no model selected”. If the configuration was
previously judged to be legal, it is no longer legal.

● addComponent(slot, component): Adds the selected component to the selected
slot. If the configuration was previously judged to be legal, it is no longer legal.

● removeComponent(slot): Removes the selected component to the selected slot. If
the configuration was previously judged to be legal, it is no longer legal.

● isLegalConfiguration(): Compares the current configuration to the entry in
ModelDB. If the configuration is valid, the Model’s isLegal field is set to “true”.

33

Choosing States

• What does the class represent?
• In this case: a computer model.

• What causes method results to differ?
• Whether the model is legal or illegal.

• Can the class be in any other states?
• We may not have set the model yet. We could still be

making decisions and have not determined legality.

34

No Model
Selected Configuring Legal

Configuration

Choosing Transitions and Initial State
No Model
Selected

Configuring

Legal
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component()

remove
Component()

isLegalConfiguration()
[legalConfig=true]

isLegalConfiguration()
[legalConfig=false]

35

Choosing Test Cases
No Model
Selected

Configuring

Valid
Configuration

selectModel(model)

deselectModel()

deselectModel()

addComponent
(slot,component)

addComponent
(slot,component)

remove
Component()

remove
Component()

isLegalConfi
guration()
[legalConfig
=true]

isLegalConfi
guration()
[legalConfig
=false]

TC1:
selectModel(M1) [M1, 1 slots = C1]
deselectModel()
selectModel(M1)
addComponent(S1,C1)
isLegalConfiguration() //true
deselectModel()

TC2:
selectModel(M1) [M1, 1 slot = C1]
addComponent(S1,C1)
isLegalConfiguration() //true
addComponent(S2,C2)
isLegalConfiguration() // false
removeComponent(S2)
isLegalConfiguration() // true
removeComponent(S1)

36

An Important Reminder
• Do not do this for all classes in your system.

• State does not always have a significant impact.
• Some classes are simple enough to cover through basic

functional testing
• Building state machines requires a lot of work.
• Many real world systems have too many classes.

• Facebook’s iOS app - 18000 classes.
• Look for classes where state clearly matters. Model

and cover those classes.

37

38

Let’s Take a Break

39

Interclass Testing (multi-class)

Interclass Testing
• Most software works by combining multiple,

interacting components.
• In addition to testing components independently, we must

test their integration.
• Integration testing focuses on testing the

compatibility of the interfaces of multiple classes.
• Can they provide services to each other in a form that

allows the calling class to complete its job.

40

41

Integration Faults
• Inconsistent interpretation of parameters or values

• Developer implementing a class must interpret how to
call methods from another class or subsystem.

• Interpretation may be reasonable, but wrong.
• Ex: Mix of metric and imperial units.

• Violation of value domains, capacity, or size limit
• Implicit assumptions on ranges of values or sizes.
• Buffer overflow when one class assumes a different

memory capacity for a variable than another.

42

Integration Faults
• Side-effects on parameters or resources

• Classes often make use of resources not mentioned by
their interface. If two classes attempt to use the same
resource, problems may arise.

• Ex: Both classes create a temporary file called “tmp”
• Missing or misunderstood functionality

• Underspecification of functionality may lead to incorrect
assumptions about expected results.

• Ex: multiple ways to count hits to a webpage. Client could
get unexpected results if unknown how counting is done.

43

Integration Faults
• Nonfunctional problems

• Performance expectations only explicitly stated if
expected to be a problem.

• Module interactions can lower performance, availability,
security below acceptable thresholds.

• Dynamic mismatches
• Polymorphic calls may be dynamically bound to

incompatible methods.

Interclass Testing
• When should we test a particular class that

depends on other classes?
• Identify a hierarchy of classes based on dependencies.
• Use this hierarchy to decide how and when to integrate

classes and test them.
• Start from the bottom-up, or mock classes and work from the

top-down.

44

Dependency
• As the point of interclass testing is to verify

interactions, we need to understand how classes
make use of each other.

• Class A depends on B if the functionality of B must
be present for the functionality of A to be provided.
• Model the use/include relation between classes.
• If objects of class A contain references to objects of class

B, A and B have a use/include relation.
• Ignores inheritance and abstract classes.

45

Deriving the Use/Include Hierarchy
Account

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

1 0..*

*
*

Order

LineItem

CompositeItem SimpleItem

Model PriceList Component

Slot

ModelDB SlotDB ComponentDB

CSVDB

1 *

1
*

*
* * *

* 11 0..1*

1 1 1*

*

46

Deriving the Use/Include Hierarchy

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

47

Incremental Testing
● Test pieces of the system as

they are completed.
○ Use scaffolding (stubs, drivers)

to test classes in isolation, then
swap out for real components
to test integration.

● Complex interactions can hide
the source of failures, so test a
small collection of classes
before adding more.

48

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

Bottom-Up Testing
• Start testing from the

bottom-up.
• Start from classes with no

dependency, then move up
in the hierarchy.

• Integrate SlotDB with Slot,
Component with
ComponentDB.

• Then ModelDB with Model
and Slot.

• … up to Order with all below.

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

49

Bottom-Up Testing
• Start with the lower levels of a system and work

your way upwards.
• Necessary for testing critical infrastructure.
• Very good at testing individual components.

• But, may not find major architectural problems.
• Top-Down Testing aids in finding issues related to how

classes are integrated together.

50

Top-Down Testing

Level 1

Level 2 Stubs
Level 2 Level 2 Level 2

Level 3 Stubs

Level1
Testing Sequence

51

Top-Down Testing
• Start with the high levels of system hierarchy and

work your way downwards.
• Lower levels are replaced with mock objects.

• Very good for finding architectural or integration
errors.

• May need system infrastructure in place before
testing is possible.

• Requires large effort in developing stubs.

52

53

Top-Down and Bottom-Up
• Both approaches can be applied if classes are

delivered according to the hierarchy.
• Both approaches are effective at exposing

integration issues.
• Real systems are rarely developed unidirectionally.

• Driven by reuse of components or integration of libraries.
• Driven by need to develop early prototypes.
• Can combine elements of each approach.

54

Sandwich/Backbone Testing
• Starts top-down

• Develop early prototype
for feedback.

• Integrate modules
bottom-up as built.

• Adds flexibility, but hard
to plan and monitor.

USAccount

OtherAccount

EUAccount

Customer

CustomerCare

Order

Model PriceList Component

SlotModelDB

SlotDB

ComponentDB

Account
Stubs

Order
Stub

Customer
Driver

Interclass Testing
1. Identify a hierarchy of classes to be tested

incrementally.
2. Design a set of interclass test cases for the

cluster-under test.
3. Add tests to cover data flow between method calls.
4. Integrate the intraclass exception-handling tests with

interclass exception-handling tests.
5. Integrate polymorphism test suite with tests that check

for interclass interactions.
55

Choosing Interactions
• We would like to cover all possible interactions

between classes.
• All possible states of each and all ways they can interact.
• This is clearly not possible.

• Need to choose significant scenarios.
• May be captured already in sequence diagrams.

• Describe object interactions in service of a goal.
• Vary these scenarios to capture additional illegal

interaction sequences.
56

57

Addressing OO Testing Issues

Classes are Stateful
• A class has state, and state is impacted by the

class’ methods.
• The state of the class is the result of a sequence of

methods called.
• Functional testing of classes focused on identifying the

sequence of method calls that would cover different
states.

• Structural techniques must also extend control and
data flow across sequences of method calls.

58

Direct and Indirect Coverage
• Expressions in a method can be covered either

through a direct call from a test case or a call from
one method to another.
• The test calls Method A, then Method A calls Method B.

Code in Method B is covered indirectly.
• How coverage is attained may impact the likelihood

of fault detection.
• Coverage is attained contextually. Direct and indirect

method calls cover same elements with different input.
59

Direct and Indirect Coverage
• Branch Coverage of

faultyAdd can be attained
through direct method calls
from a test case, or by
calling add (which calls
faultyAdd).

• Indirect coverage cannot
reveal the fault.

• Must consider the context in
which coverage is attained.

public int[] add(int[] values, int valueToAdd){
 for(int i = 0; i < values.size(); i++){
 if(valueToAdd >= 0){ values[i] =
 faultyAdd(values[i], valueToAdd);
 }
 }
 return values;
}

public int faultyAdd(int value, int valueToAdd){
 if (valueToAdd <= 0){
 // FAULT, should be ==
 return value;
 }
 return value + valueToAdd;
}

60

Structural Testing of Classes
• Private methods can

only be covered
indirectly.

• Coverage may be difficult to
achieve.

• Context is important.
• Structural techniques must

extend control and data flow
across sequences of method
calls.

public class Model extends Orders.CompositeItem{
public String modelID;
private int baseWeight;
private int heightCm, widthCM, depthCM;
private Slot[] slots;
private boolean legalConfig = false;
private static final String NoModel = “NO

MODEL SELECTED”;

private void checkConfiguration(){
...

}

public boolean isLegalConfiguration(){
if(!legalConfig){

this.checkConfiguration();
}
return legalConfig;

}
}

61

Writing Oracles for Classes
• Correctness of a method is judged on the output of

the method and the state of the object.
• deselectModel() should clear array slots on the object.

• Oracles must check validity of output and state.
• State may not be directly accessible.

• Private variables.

62

Option 1: Modify the Code
• Break encapsulation by making variables public

while testing.
• Risk - different behavior between testing and production

code.
• C++ has friend classes

• Add “getter” methods.
• Add a method that produces a representation of the

entire state of the object.
• object.toString() in Java.

63

Option 2: Java Reflection
• Reflection allows object inspection at runtime.
• Can be used to identify classes, fields, and

methods, and use them to perform tasks.
Method[] methods = MyObject.class.getMethods();

for(Method method : methods){
 System.out.println("method = " + method.getName());

}

• This code gets the class and prints out the list of methods.

64

Option 2: Java Reflection
• Reflection can be

used to access private
fields and methods.

• Protects the real
object from
modification, but can
be used to get
information for testing.

public class PrivateObject {

 private String privateString = null;

 public PrivateObject(String privateString) {

 this.privateString = privateString;

 }

}

PrivateObject privateObject = new PrivateObject("The Private

Value");

Field privateStringField =

PrivateObject.class.getDeclaredField("privateString");

privateStringField.setAccessible(true);

String fieldValue = (String)

privateStringField.get(privateObject);

System.out.println("fieldValue = " + fieldValue);

65

• Behavior depends on the object
assigned at runtime.

• If LineItem.getUnitPrice() is
called, it may actually be
SimpleItem.getUnitPrice().

• Wrong object might be bound to
the variable.

• May be difficult to tell which class
has the fault.

• Fault may be a result of a
combination of bindings.

• Testing one possible binding is not
enough - try multiple bindings.

66

Polymorphism and Dynamic Binding LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

Inheritance
• We can define child classes

that inherit attributes and
operations.

• Most inheritance issues are
really polymorphism issues.

• However, inheritance may
allow us to reduce the
number of test cases
required.

67

LineItem
+sku: string
+units:integer
+validItem(): boolean
+getUnitPrice():integer
+getExtendedPrice(): integer
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

CompositeItem
+parts: vector
+getUnitPrice(): integer

SimpleItem

+getUnitPrice():integer

Model
-baseWeight: integer
+modelIF: string
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-slots: Slot
-legalConfig: boolean
+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration(): boolean
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer

Component
-heightCm: integer
-widthCm: ingeger
-depthCm: integer
-weightGm: integer
-slotCompat: string
+getHeightCm(): integer
+getWidthCm(): integer
+getDepthCm(): integer
+getWeightGm(): integer
+isCompatible(): boolean

Inheritance and Test Reuse
• Subclasses share methods with ancestors.
• We can categorize methods as:

• New: If not inherited, we need to test them.
• If the name is the same, but parameters have changed, it is new.

• Recursive: Inherited from the ancestor without change.
Code only appears in the ancestor.

• Redefined: Overridden in the subclass.

68

Inheritance and Test Reuse
• A method can be abstract in parent, child, or both.
• We can categorize abstract methods as:

• Abstract New: New and abstract in the child.
• Abstract Recursive: Inherited when the ancestor’s

version was abstract.
• Still abstract in child.

• Abstract Redefined: Redefined when the ancestor’s
version was abstract.

• Child version is not abstract.

69

Inheritance and Test Reuse
• In general, four sets of tests for a method:

• Intraclass Functional, Intraclass Structural
• Interclass Functional, Interclass Structural

• When we test a subclass, new methods need tests.
• Recursive or Abstract Recursive methods do not

need to be retested.
• Redefined or Abstract Redefined must be retested.

70

Genericity
• Generic class is instantiated with different types:

• LinkedList<String>, LinkedList<Integer>
• HashMap<String,Integer>,

HashMap<ArrayList<Integer>,Boolean>

• Important for building reusable components and
libraries.

• Challenging to test:
• Can only test instantiations, not the generic class.
• May not know all ways it can be instantiated.

71

Testing Generics
• Designed to behave consistently.
• First, testing requires showing that any instantiation

is correct.
• In general, this is straightforward if we have code of the

generic class and the parameterized version.
• Second, do all possible parameterizations behave

identically to the tested one?

72

Testing Generics
• Potential challenge - does the generic class interact

with the parameterized version?
• i.e., the generic makes use of a service the

parameterized version might also make use of.
• class PriorityQueue<Elem implements Comparable> {...}

• Behavior of PriorityQueue<E> depends on E.
• Acceptable as long as E behaves correctly when fulfilling

requirements of Comparable.
• Interfaces are a type of specification.

73

Exceptions
• Exceptions separate error handling from the

primary program logic.
• Common fault in C - not checking for error indications

returned by a function.
• In Java, a thrown exception interrupts control.

• Introduces implicit control flow
• The point where an exception is caught and handled may

not match where it is thrown.
• Associations of exceptions with handlers is dynamic.

• Exception propagates up stack of calling methods until it reaches
a matching handler.

74

Exceptions
• Cannot be treated as normal control flow.

• Would have to add branches for every possible exception
(array index references, memory allocations, casts, etc.)
and match to any handler.

• Separate exceptions from explicit control flow.
• Dismiss any exceptions triggered by program errors

signaled by the system.
• Subscript errors, bad casts.
• Exercising these does not help prevent or find errors.

75

Exceptions
• … Unless we have explicitly written code to handle

those kind of exceptions.
• Still must test the error recovery code.

• Still do not need to couple recovery code to every point where
there might be an error.

• Must handle exceptions indicating abnormal cases.
• If exception handler is local, must test the handler.
• Do not need to test each point the exception might be

raised.

76

Exceptions
• Must handle exceptions indicating abnormal cases.

• If the handler is not local…
• The exception will be passed up the stack until it is

handled. There could be many potential handlers.
• It is very hard to determine where it will be handled.
• We can’t test all possible chains.
• Instead, enforce a design rule:

• If a method can propagate an exception without catching it, that
call should have no other effect.

77

We Have Learned
• Testing of OO systems is impacted by

• State Dependent Behavior
• Encapsulation
• Inheritance
• Polymorphism and Dynamic Binding
• Abstract Classes
• Exception Handling
• Concurrency

78

We Have Learned
• As classes are impacted by state, we can test them

effectively by building state machines and deriving
transition-covering tests.
• A path is a set of method calls on that class.

• Groups of classes should be arranged by their
dependence relationships, then tested from the
bottom-up and top-down.

79

2018-08-27 Chalmers University of Technology 80

Next Class
• Fault-Based Testing

• Optional Reading - Pezze and Young, Chapter 16
• Assignment 2

• Due March 1, questions?

