
Lecture 12: Fault-Based Testing

Gregory Gay
DIT635 - February 28, 2020



Space Shuttle Challenger
• January 28, 1986 - seal failure in a 

rocket booster causes the shuttle to 
explode, killing all seven astronauts.

• Three year investigation found technical 
and organizational issues.

• Became a case example studied in 
many forms of engineering.
• Learn from your failures.

2



Fault-Based Testing
By studying faults in previous designs, we can predict 
and prevent similar faults in future product designs.

Many testing techniques based on what we think 
should happen. We can also test based on knowledge 
of what has gone wrong before.

3



Used in Language Design
• Automated Garbage Collection

• Prevents dangling pointers, memory leaks, other memory 
management faults.

• Automatic Array Bounds Checking
• Does not prevent bad indexes from being used, but 

ensures they are noticed and limits damage.
• Type Checking

• Prevents malformed values from being used as input or 
in computations.

4



Fault-Based Testing
• Consider the types of faults we expect to see.

• Create alternate mutated versions of the program.
• Design tests that distinguish the real program from the 

mutated program.
• Process of fault seeding - deliberately creating 

programs with faults to see if our tests can find 
those intentional faults. 

5



Uses of Fault Seeding
• Fault seeding can be used to: 

• Judge the adequacy of a test suite.
• Select test cases to augment a suite.

• Provides evidence that we have done a good job.
• If our tests have not found faults, are there no more major 

issues, or are they bad tests?
• Fault seeding helps answer this question. 

• Can the existing tests find the seeded faults?

6



Mutation Testing
• Encode common syntactic 

faults as mutation operators. 
• Functions that take in 

candidate program 
statements and insert the 
modeled fault.

• Produces a mutant.
• A clone of the program with 

1+ seeded faults. 

SUT

Mutant

Mutation 
Operator

if((a == 1) && !b){ ...

if((a == 1) || !b){ ...

7



8

Mutation Operators



Mutation Operators
• Intended to model common types of faults.
• Designed to be applied to any type of code, without 

human intervention.
• Tend to be simple syntactic faults.

• Replacing one variable reference with another.
• Changing a comparison from < to <=.
• Referencing a parent class instead of a child.

9



Operand Modifications
• X for Y replacement

• Replace constant C1 with constant C2.
• int X = 72; -> int X = 135;

• Replace constant C with variable S.
• int Y = 135; int X = 72; -> int Y = 135; int X = Y; 

• Replace variable S for constant C.
• int X = Y; -> int X = 72;

• Replace variable S1 with variable S2.
• int X = Y; -> int X = Z; 

10



Operand Modifications
• X for Y replacement

• Replace variable/constant with array reference A[I].
• int X = Y; -> int X = A[4];

• Replace array reference A[I] with variable/constant.
• int X = A[4]; -> int X = Y;

• Replace array reference with another array reference.
• Either another array or another index in the same array.
• int X = A[4]; -> int X = A[10];

11



Expression Modifications
• Arithmetic Operators

• Binary operators: x (+, -, *, /, %) y
• Unary operators: +x, -x, &x, *x
• Shortcut operators: x++, ++x, x--, --x

• Arithmetic Operator Replacement
• Replace binary/unary/shortcut operator with another.

• Z = X + Y; -> Z = X - Y;
• Replace shortcut/unary operator with a unary/shortcut.

• Z = --X; -> Z = -X;

12



Expression Modifications
• Arithmetic Operator Insertion

• Insert an additional operator into an expression.
• int Z = X; -> int Z = X + Y;
• int Z = X; -> int Z = X++;

• Arithmetic Operator Deletion
• Remove an operator from an expression.
• int Z = X + Y; -> int Z = X;
• int Z = X++; -> int Z = X;

13



Expression Modifications
• Conditional Operators

• Binary: x (&&, ||, &, |, ^) y
• Unary: (~, !)x

• Relational Operators
•  x (>, >=, <, <=, ==, !=) y

• Shift Operators
• x (>>, <<, >>>>) y

• Operator Replacement, Insertion, Deletion
• Works like arithmetic operators.

14



Expression Modifications
• Shortcut Operators

• x (+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=) y
• Shortcut Operator Replacement

• Absolute Value Insertion
• Replace a subexpression with abs(e).

• int Z = X + Y; -> int Z = abs(X + Y);

• Constant for Predicate Replacement
• Replace boolean predicate with a constant value (T/F).

• bool Z = (A || B) && C; -> bool Z = (A || true) && C;

15



Statement Modifications
• Statement Deletion

• Remove a random statement from the program.
• Switch Case Replacement

• Replace the label of one case with another.
• End Block Shift

• Move closing brackets to an earlier or later location.

16



Encapsulation/Inheritance 
• Access Modifier Change

• Change a modifier to (public/protected/private)
• public void DoThis(int x) -> 

private void DoThis(int x)

• Hiding Variable Modifications
• Hiding variable - a variable in a subclass that has the 

same name and type as a variable in the parent.
• Class Parent { .. int X; ..}

Class Child implements Parent {.. int X; ..}

17



Encapsulation/Inheritance 
• Hiding Variable Deletion

• Deletion causes references to that variable to access the 
version in the parent instead.

• Class Child implements Parent {.. int X; .. int Y = X;} 
-> Class Child implements Parent { ..int Y = X;}

• Hiding Variable Insertion
• Insert a hiding variable into a subclass.
• Now, two variables of the same name exist.
• Class Child implements Parent {.. int Y = X; ..} -> 

Class Child implements Parent {.. int X; .. int Y = X;}

18



Inheritance Modifications
• Overriding Method Deletion

• Delete an overriden method from a subclass.
• References call the version inherited from a parent.
• Class Child implements Parent { … 

@Override public int doThis(){ .. } …
 int X = doThis(); } 
->
Class Child implements Parent { … 
int X = doThis(); } 

19



Inheritance Modifications
• Overridden Method Calling Position Change

• Overridden methods can call the parent method.
• Moves calls to the parent version to other positions.
• @Override

public int doThis(){
    int x = super(); int y = 5; ...  }   ->
@Override
public int doThis(){
    int y = 5; ... int x = super();  } 

20



21

Inheritance Modifications
• Super Keyword Insertion/Deletion

• Inserts or deletes the super() keyword.
• @Override

public void doSomething(){ 
    super(); … } ->
@Override
public void doSomething(){ 
    … }



Inheritance Modifications
• Overridden Method Renamed

• Rename a method in the parent class that was 
overridden by the child.

• Ensures that the overridden version is always called 
instead of the parent version.

• Class Parent { … public void doThis(); } Class Child 
implements Parent { … @Override public void doThis(); }
-> 
Class Parent { … public void doThat(); } Class Child 
implements Parent { … public void doThis(); }

22



Inheritance Modifications
• Explicit Parent Constructor Call Deletion

• Deletes super() call in a constructor.
• To detect, tests must trigger an incorrect initial state.
• Class Child implements Parent {

    int x;
    public Child () { super(); ... } } -> 
Class Child implements Parent {
    int x;
    public Child () { ... } }

23



Polymorphism Modifications
• New Method Call with Child Class Type

• Replace a declaration with a valid child instance.
• Parent a = new Parent(); -> Parent a = new Child();

• Variable Declaration With Parent Class Type
• Change the declared type of a variable to its parent.

• Child a = new Child(); -> Parent a = new Child();
• boolean equals(Child c){..} -> 

boolean equals(Parent c){..}

24



Polymorphism Modifications
• Type Cast Operator Insertion/Deletion

• Cast the type of an object reference to the parent or child of the 
original type.
• p.toString() -> ((Child) p).toString()

• Or delete a type cast operator.
• ((Child) p).toString()-> p.toString()

• Cast Type Change
• Changes a cast to another valid data type.
• ((SomeChild) c).toString() -> 

((OtherChild) c).toString()

25



Polymorphism Modifications
• Reference Assignment with Other Compatible Type

• Change an object reference to point to another compatible 
variable.

•                                                ->
Object obj;
String s = “hello”;
Integer i = new Integer(4);
obj=s;

Object obj;
String s = “hello”;
Integer i = new Integer(4);
obj=i;

26



Polymorphism Modifications
• Overloading allows 2+ methods to have the same 

name if they have different signatures.
• Overloading Method Contents Change

• Replace the body of a method with the body of another 
method with the same name.

• public void doThis (int x) { … int Z … }
public void doThis (int x, int y) { … int W … }    ->
public void doThis (int x) { … int W … }
public void doThis (int x, int y) { … int Z … } 

27



Polymorphism Modifications
• Overloading Method Deletion

• Deletes one of the overloading methods.
• public void doThis (int x) { … }

public void doThis (int x, int y) { … }    ->
public void doThis (int x) { … }

• Argument of Overloading Method Change
• Changes order or number of arguments in an invocation, 

as long as there is a version that will accept the list.
• public void doThis (int x, int y) { … }    ->

public void doThis (int y, int x) { … }

28



Language-Specific Modifications
• Mutation operators can be written for a particular 

language.
• Java:

• this insertion/deletion
• Static modifier insertion/deletion
• Member variable initialization deletion
• Default constructor deletion
• Getter/Setter method replacement

29



30

Let’s Take a Break



31

Mutation Testing



Mutation Testing
• Select mutation operators - code transformations 

representing interesting types of faults.
• Generate mutants by applying mutation operators 

to the program.
• Execute the same tests against the program and 

mutants to kill mutants. 
○ A mutant is killed if the test passes on the original 

program and fails on the mutant.
○ A mutant not killed is considered live.

32



Mutation Testing
• Mutation operators reflect small syntactic mistakes.
• Programmers do make such mistakes. 
• However, many faults are actually conceptual 

mistakes.
• Mistaken assumptions about requirements.
• Forgotten requirements.

• Is mutation testing a reasonable technique?

33



Viability of Mutation Testing
• Mutation testing is valid if seeded faults are 

representative of real faults. 
• Competent Programmer Hypothesis

• A faulty program differs from a correct program only by a 
small textual change.

• If so, we only have to distinguish the program from all 
such small variants.

• Assumption: the SUT is “close to” correct.

34



Coupling Effect
• Many faults are small syntactical errors.
• Conceptual faults often manifest as syntax errors.
• Complex faults result in larger textual differences.

• However, mutation testing is still valid if test cases for 
simple issues can detect complex issues.

• Coupling Effect Hypothesis - complex faults can be 
modeled as a set of small faults.

35



Coupling Effect
• A complex change is a series of small changes.
• If one small change is not covered up, a test case 

that can expose that small change can also detect 
a more complex change.

• Mutation testing is effective if both the competent 
programmer hypothesis and coupling effect 
hypothesis hold.

36



Sensitivity Analysis
• Mutants are often simpler than real faults.

• Must be fairly simple to be inserted by automated tooling.

• Mutation best used to judge sensitivity of your 
tests to minor changes in the code.
• If tests can distinguish all mutants from the real code, 

then your tests execute the code thoroughly.
• If you miss mutants, you can add new tests to detect 

them and make your suite more sensitive.

37



Mutant Quality
To be used in testing, mutants must be:
• Syntactically correct (valid)

• Mutants must compile and execute.

• Plausible (useful) 
• Must provide valuable information on how the system 

works for testers working to improve the system.

Can a mutant be valid, but not useful?

38



Mutant Quality
Mutants might remain live if:
• They are equivalent to the original program.

• for(i=0; i < 10; i++) -> 
• for(i=0; i != 10; i++)
• Identifying equivalency is NP-hard.

• Test suite is inadequate for that mutation. 
• (a <= b) and (a >= b) cannot be differentiated if a==b 

in the test case. 

39



Mutation Coverage
Adequacy of the suite can be measured as:

 (# mutants killed)
(total mutants)

• Helps ensure that the test suite is robust against 
the modeled mutation types.

• Ensures that the test suite is sensitive to small 
changes in the code. 

40



Mutation and Structural Coverage
Mutation coverage can subsume structural coverage.
• Statement Coverage

• Apply statement deletion to all statements.
• To kill a mutant where statement S has been deleted 

requires executing S in the original program.
• Branch Coverage

• Apply constant replacement to all predicates.
• To kill a mutant where a predicate is set to true, a test 

must execute the original with a false value.

41



Practical Considerations
Mutation testing is expensive.
• Must run all tests against all mutants.
• Many mutants typically generated.

• One mutation operator applied per mutant.

• If cost is an issue, use “weak” mutation testing:
• Apply multiple mutation operators per mutant.

42



Weak Mutation Testing
• Seed multiple faults into a single mutant.

• Called a “meta-mutant”
• Divide the program into segments and track internal 

state of both original and all mutants when 
executing a segment.
• If internal state differs, we consider mutants detected 

from that segment.
• Program output does not need to differ.

• Decreases the number of test executions.
• Also reduces threshold for what we consider detected.

43



Statistical Mutation Testing
• A test suite that kills some mutants may be as 

effective at finding real faults as one that kills all 
mutants.

• Mutation testing can obtain a statistical estimate of 
the ability of the suite to detect mutations.
• Randomly generate N mutants.
• Samples must be a valid statistical model of occurrence 

frequencies of real faults. 
• Target 100% coverage over the sample.

44



Activity
1. How many mutations are possible 

for Relational Operator 
Replacement, Arithmetic Operator 
Replacement

2. Apply relational operator 
replacement operation to 
statement 4, design a test that 
would kill that mutant.

3. Design an equivalent mutant. 
4. Design a valid, but useless mutant. 

public int[] makePositive(int[] a){

int threshold = 0;

for(int i=0; i < a.length; i++){

if(a[i] < threshold){

a[i]= -a[i];

}

}

return a;

}

45



Activity - Solution
• How many mutations are possible:

• Relational Operator Replacement: 
• for(int i=0; i < a.length; i++){

•  (>=, >, <=, ==, !=), 5 mutations
• if(a[i] < threshold){

•  (>, >=, <=, ==, !=), 5 mutations

46



Activity - Solution
• How many mutations are possible:

• Arithmetic Operator Replacement
• for(int i=0; i < a.length; i++){

• Shortcut replacement, (++i, i--, --i), 3 mutations
• a[i]= -a[i];

• Unary replacement, (+a[i]), 1 mutation
• Unary to shortcut replacement, (a[i]++, ++a[i], a[i]--, 

--a[i]), 4 mutations

47



Activity - Solution
• Apply the relational operator replacement operation to 

statement 4:
• if(a[i] < threshold){      ->
• if(a[i] == threshold){ 

• Design a test case that would kill that mutant.
• a[-1,0,1]
• -1 would not become positive.

48



Activity - Solution
• Design an equivalent mutant. 

• Can do so by applying the relational operator 
replacement operation to statement 4:
• if(a[i] < threshold){ becomes:
• if(a[i] <= threshold){ 

• Since threshold=0, and -0 = 0, no test would detect.
• Does not help us test, as the fault cannot cause a failure.

49



Activity - Solution
• Design a valid, but useless mutant. 

• For example: mutant that compiles, but trivially fails.
• Apply the relational operator replacement operation to 

statement 4:
• if(a[i] < threshold){ becomes:
• if(a[i] > threshold){ 
• Any positive numbers are made negative, all negative 

remain negative. Almost any test would detect this.
• Many mutants are useless for detecting real faults.

50



We Have Learned
• Mutation testing is the process of inserting faults to 

help develop a test suite that can detect unknown 
real faults.

• Mutation operators automatically create faulty 
versions of a program.
• Operators model expected fault types.

• Tests are judged according to their ability to detect 
faults - useful sensitivity analysis.

51



2018-08-27 Chalmers University of Technology 52

Next Time
• Exercise Session: More Mutation Testing

• Bring a laptop with MeetingPlanner code.
• Next class: Model-Based Testing

• Optional Reading - Pezze and Young, Chapters 5.5 and 
14

• Assignment 2 due Sunday, March 1.
• And Assignment 3 is up.




