
Lecture 13: Model-Based Testing

Gregory Gay
DIT635 - March 4, 2020

Models and Software Analysis
• Before and while building products, engineers

analyze models to address design questions.
• Software is no different.
• Software models capture different ways that the

software behaves during execution.

2

Behavior Modeling
• Abstraction - simplify a problem by identifying and

focusing on important aspects while ignoring all
other details.

• Key to solving many computing problems.
• Solve a simpler version, then apply to the big problem.

• A model is a simplified representation of an artifact,
focusing on one facet of that artifact.
• The model ignores all other elements of that artifact.

3

Software Models
• A model is an abstraction of the system being

developed.
• By abstracting away unnecessary details, extremely

powerful analyses can be performed.

• Can be extracted from specifications and design
plans
• Illustrate the intended behavior of the system.
• Often take the form of state machines.

• Events cause the system to react, changing its internal state.
4

What Can We Do With This Model?

… Then we can derive test cases from the model that can
be applied to the program. If the model and program do not
agree, then there is a fault.

Specification
public static void Main(){

System.out.println(“Hell
o world!”);
}

If the model satisfies
the specification...

And If the model is
well-formed, consistent,
and complete.

And If the model accurately
represents the program.

5

Model-Based Testing
• Models describe the structure of the input space.

• They identify what will happen when types of input are
applied to the system.

• That structure can be exploited:
• Identify input partitions.
• Identify constraints on inputs.
• Identify significant input combinations.

• Can derive and satisfy coverage metrics for certain
types of models.

6

Model Properties
To be useful, a model must be:
• Compact

• Models must be simplified enough to be analyzed.
• “How simple” depends on how it will be used.

• Predictive
• Represent the real system well enough to distinguish

between good and bad outcomes of analyses.
• No single model usually represents all characteristics of

the system well enough for all types of analysis.
7

Model Properties
To be useful, a model must be:
• Meaningful

• Must provide more information than success and failure.
Must allow diagnoses of the causes of failure.

• Sufficiently General
• Models must be practical for use in the domain of

interest.
• An analysis of C programs is not useful if it only works for

programs without pointers.
8

9

Finite State Machines

Finite Abstraction
• A program execution can be viewed as a sequence

of states alternating with actions.
• Software “behavior” is a sequence of

state-action-state transitions.
• The set of all possible behaviors is often infinite.

• Called the “state space” of the program.
• Models of execution are finite abstractions

(simplifications) of the full program’s state space.

10

Finite State Machines
• A directed graph.
• Nodes represent states

• An abstract description of the current
value of an entity’s attributes.

• Edges represent transitions between states.
• Events cause the state to change.
• Labeled event [guard] / activity

• event: The event that triggered the transition.
• guard: Conditions that must be true to choose a transition.
• activity: Behavior exhibited by the object when this transition

is taken.
11

Some Terminology
• Event - Something that happens at a point in time.

• Operator presses a self-test button on the device.
• The alarm goes off.

• Condition - Describes a property that can be true
or false and has duration.
• The fuel level is high.
• The alarm is on.

12

Some Terminology
• State - An abstract description of the current value

of an entity’s attributes.
• The controller is in the “self-test” state after the self-test

button has been pressed, and leaves it when the rest
button has been pressed.

• The tank is in the “too-low” state when the fuel level is
below the set threshold for N seconds.

13

States, Transitions, and Guards
• States change in response to events.

• A state change is called a transition.
• When multiple responses to an event (transitions

triggered by that event) are possible, the choice is
guided by the current conditions.
• These conditions are also called the guards on a

transition.

14

State Transitions
Transitions are labeled in the form:

event [guard] / activity

• event: The event that triggered the transition.
• guard: Conditions that must be true to choose this

transition.
• activity: Behavior exhibited by the object when

this transition is taken.

15

State Transitions
Transitions are labeled in the form:

event [guard] / activity

• All three are optional.
• Missing Activity: No output from this transition.
• Missing Guard: Always take this transition if the event

occurs.
• Missing Event: Take this transition immediately.

16

State Transition Examples
Transitions are labeled in the form:

event [guard] / activity

• The controller is in the “self-test” mode after the test
button is pressed, and leaves it when the rest
button is pressed.
• Pressing self-test button is an event.
• Pressing the rest button is an event.

• The tank is in the “too-low” state when fuel level is
below the threshold for N seconds.
• Fuel level below threshold for N seconds is a guard.

17

Example: Gumball Machine

Waiting for
Quarter

Quarter
Inserted

user inserts quarteruser ejects quarter

Gumball
Sold

user turns crank

Out of
Gumballs

[gumballs > 0]

[gumballs -1 > 0]
/ dispense
gumball

[gumballs -1 = 0] / dispense
gumball

18

More on Transitions
Guards must be mutually exclusive

If an event occurs and no
transition is valid, then the
event is ignored.

last bill ejected [balance >
0 && balance >= needed]

Able to
Purchase

last bill ejected
[balance = 0]

Waiting for
Money

More Money
Needed

last bill ejected
[balance > 0 &&
balance < needed]

19

Internal Activities
States can react to events
and conditions without
transitioning using internal
activities.

● Special events: entry
and exit.

● Other activities occur
until a transition occurs.
○ On each “time step”.
○ Entry and exit not

re-triggered without a
self-transition.

Typing
entry / highlight all
exit / update field
character entered / add to field
help requested [verbose] / open help page
help requested [minimal] / update status bar

20

Example: Maintenance
If the product is covered by warranty or maintenance contract,
maintenance can be requested through the web site or by bringing the
item to a designated maintenance station.
If the maintenance is requested by web and the customer is a US
resident, the item is picked up from the customer. Otherwise, the
customer will ship the item.
If the product is not covered by warranty or the warranty number is not
valid, the item must be brought to a maintenance station. The station
informs the customer of the estimated cost. Maintenance starts when
the customer accepts the estimate. If the customer does not accept, the
item is returned.

No Maintenance
Waiting for Pick Up

Request - No Warranty

Wait for Acceptance Wait for Returning
21

Example: Maintenance
If the maintenance station cannot solve the problem, the
product is sent to the regional headquarters (if in the US) or
the main headquarters (otherwise). If the regional
headquarters cannot solve the problem, the product is sent
to main headquarters.
Maintenance is suspended if some components are not
available.
Once repaired, the product is returned to the customer.

Repair at Station

Repair at Regional HQ Repair at Main HQ

Wait for Component

Repaired

22

Example:
Maintenance

23

Finite State Space
• Most systems have an infinite number of states.

• For a communication protocol, there are an infinite
number of possible messages that can be passed.

• Non-finite components must be ignored or
abstracted until the model is finite.
• For the communication protocol, the message text

doesn’t matter. How it is used does matter.
• Requires an abstraction function to map back to the real

system.

24

Abstraction Functions
• We can link a concrete state to a model state

through an abstraction function.
• Translates the real program to a model by stripping away

details.
• Groups states that only differ through details abstracted

from the model.
• This has two effects:

• Sequences of transitions are collapsed into fewer execution
steps.

• Nondeterminism can be introduced.
25

Abstraction Functions
This has two effects:
• Sequences of transitions

are collapsed into fewer
execution steps.

• Nondeterminism can
be introduced.

x = 0;
y = 0;
z = 0;

x = 0;
y = 0;
z = 1;

x = 0;
y = 1;
z = 0;

x = 0;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program:

Model:

x = 0;
y = 0;
z = 0;

x = 0;
y = 1;
z = 0;

x = 0;
y = 0;
z = 1;

x = 1;
y = 1;
z = 1;

x = 0;
y = 0;

x = 0;
y = 1;

Program: Model:

x = 1;
y = 1;

26

Activity - Secret Panel Controller
You must design a state machine for the controller of a
secret panel in Dracula’s castle.
Dracula wants to keep his valuables in a safe that’s hard to find. So, to
reveal the lock to the safe, Dracula must remove a strategic candle
from its holder. This will reveal the lock only if the door is closed. Once
Dracula can see the lock, he can insert his key to open the safe. For
extra safety, the safe can only be opened if he replaces the candle first.
If someone attempts to open the safe without replacing the candle, a
monster is unleashed.

27

Activity Solution

Wait

Open

Lock
Revealed

Monster
Unleashed

candle removed [door closed] /
reveal lock

key turned [candle in] /
open safe

safe closed / close
panel

key turned [candle out] /
release monster

28

State Coverage
• Each state reached by one or more test cases.
• Like statement coverage - unless model has been

placed in each state, faults cannot be revealed.
• Easy to understand and obtain, but low

fault-revealing power.
• The software takes action during the transitions, and

most states can be reached through multiple transitions.

29

Transition Coverage
• A transition specifies a pre/post-condition.

• “If the system is in state S and sees event I, then after
reacting to it, the system will be in state T.”

• A faulty system could violate any of these precondition,
postcondition pairs.

• Coverage requires that every transition be covered
by one or more test cases.
• Subsumes state coverage.

30

Example: Maintenance ● If no “final” states, we
could achieve transition
coverage with one large
test case.
○ Smarter to break

down FSM and
target sections in
isolation.

Example Suite:
T1: request w/ no warranty (0->2) - estimate costs
(2->4) - reject (4->1) - pick up (1->0)
T2: 0->5->2->4->5->6->0
T3: 0->3->5->9->6->0
T4: 0->3->5->7->5->8->7->8->9->7->9->6->0
T5: 0->5->8->6->0

31

History Sensitivity
• Transition coverage based on assumption that

transitions out of a state are independent of
transitions into a state.

• Many machines exhibit “history sensitivity”.
• Transitions available depend on the history of previous

actions.
• AKA - the path to the current state.
• Can be a sign of a bad model design.

• “wait for component” in example.
• Path-based metrics can cope with sensitivity.

32

Path Coverage Metrics
• Single State Path Coverage

• Requires that each subpath that traverses states at most
once to be included in a path that is exercised.

• Single Transition Path Coverage
• Requires that each subpath that traverses a transition at

most once to be included in a path that is exercised.
• Boundary Interior Loop Coverage

• Each distinct loop must be exercised minimum, an
intermediate, and a large number of times.

33

Single State/Transition Path Coverage

Single State/Transition
Path Coverage
● Requires that

each subpath
that traverses
states/transitions at
most once to be
included in a path
that is exercised.

34

Boundary Interior Loop Coverage
Boundary Interior
Loop Coverage
● Each distinct

loop must be
exercised minimum,
an intermediate, and
a large number of
times.

35

Test Generation
• Test cases created for models can be applied to

programs.
• Events can be translated into method input.
• System output, when abstracted, should match model

output.
• Model coverage is one form of requirements

coverage. Tests should be effective for verification.

36

Activity
For this model, derive test suites that achieve state and
transition coverage.

37

Activity - State Coverage
[true,1], [false,2], [false, 65]

38

Activity - Transition Coverage
1. [true,1], [false,2], [false, 65], [true, 66], [false, 77], [true,

78], [false, 79], [false, 140], [false, 141]
2. [false, 1]

39

We Have Learned
• If we build models from functional specifications,

those models can be used to systematically
generate test cases.
• Models have structure. We can exploit that structure.
• A form of functional testing.

• Helps identify important input.
• Coverage metrics based on the type of model guide

test selection.

40

We Have Learned
• State machines model expected behavior.

• Cover states, transitions, non-looping paths, loops.
• Can also be used in finite state verification (next class)

41

2018-08-27 Chalmers University of Technology 42

Next Time
• Finite State Verification

• Optional Reading - Pezze and Young, Chapter 8
• Homework 3

• Due Friday, March 13
• Questions?

