
Lecture 2: Quality - Dependability

Gregory Gay
DIT635 - January 24, 2020



2018-08-27 Chalmers University of Technology 2

Today’s Goals
• Discuss software quality in more detail.
• Introduce Scenarios

• High-level “test cases” used to assess quality.
• Discuss Dependability

• How we build evidence that the system is good enough to 
release.

• Encompasses correctness, reliability, safety, and 
robustness

• How we can measure and assess reliability



3

Software Quality
• We all want high-quality software.
• We don’t all agree on the definition of quality.
• Quality encompasses both what the system does 

and how it does it.
• How quickly it runs.
• How secure it is.
• How available its services are.
• How easy it is to modify.

• Quality is hard to measure and assess objectively.



4

Quality Attributes
• Quality attributes describe desired properties of the 

system under development. 
• Developers must prioritize quality attributes and 

design a system that meets chosen thresholds.
• Most relevant for this course: dependability

• The ability of the system to consistently offer correct 
functionality, even under unforeseen or unsafe 
conditions.



Quality Attributes
• Performance

• The ability of a system to meet timing requirements. 
When events occur, the system must respond quickly.

• Security
• The ability of a system to protect information from 

unauthorized access while providing service to 
authorized users.

• Scalability
• The ability to “grow” the system to process an increasing 

number of concurrent requests.
5



Quality Attributes
• Availability

• The ability to carry out a task when needed, to minimize 
“downtime”, and to recover from failures.

• Usability
• The ability of the software to enable users to perform 

desired tasks and provide support to users. 
• How easy is it to use the system, learn its features, adapt 

the system to meet user needs, and increase confidence 
and satisfaction in system use?

6



7

Scenarios



Scenarios
• A scenario is a well-defined description of an 

interaction between an external entity and the 
system. 
• It defines the event that triggers the scenario, the 

interaction initiated by the external entity, and the 
response required of the system.

• Similar to use cases or user stories, but examines both 
quality and functionality.

• A sort of “high-level” test case of the system.

8



Scenarios
Capture a range of requirements:

• A set of interactions with users to which a system must respond.
• Processing in response to timed events.
• Peak load situations that could occur.
• Regulator demands.
• Failure response.
• A change that a maintainer might make.
• Any situation that the design must handle.

9



Scenario Types
• Functional Scenarios define how the system 

responds to external stimuli. 
• Users initiate transactions, AIR call or data sent through 

an interface, timed events.

• System Quality Scenarios define how the system 
should react in order to exhibit quality properties.
• Ability to be modified to provide new functionality, to cope 

with peak load, to protect critical information.

10



Scenario Usage
• Provide input to architecture definition.

• Help flesh out and find missing requirements.
• Evaluate the architecture

• Force description of execution paths through system
• Find missing/incompatible interfaces.

• Communicate with stakeholders
• Concrete, easy to understand.

• Drive the testing process
• Help prioritize testing efforts.

11



12

Functional Scenarios



Functional Scenario Format
• Overview

• Brief description of what the scenario illustrates.
• System State

• State of system before the scenario starts.
• System Environment

• Significant observations about the environment that the system is 
running in.

• External Stimulus
• The event that sets off the scenario.

• Required System Response
• How should the system respond?

13



Functional Scenario Format
• External stimulus should describe both the actor 

making a request and action.
• Actor: the user, environmental stimulus such as a failure 

or timer, or external system.
• Action: the request, event, or activity.

• Required system response should describe both 
how the system responds and a response 
measure.
• Success or failure criterion for the response.

14



Example: Statistics Processing
• Raw data is loaded into 

a database.
• Derived statistics are 

calculated automatically 
based on the data.

• Statisticians view the data and make reports.
• Clients access statistics and make deductions that 

are checked manually.
15



Functional Scenario: Incremental Statistics Update

• Overview: How the system deals with a change to the existing base data.
• System State: Summary statistics already exist for the sales quarter that 

the incremental statistics refer to. The system’s databases have enough 
space to cope with the processing required for this update.

• System Environment: The deployment environment is operating 
normally, without problems.

• External Stimulus: Update to sales transactions for the previous quarter 
arrives via the Bulk Data Load external interface.

• Required System Response: The incoming data should automatically 
trigger background statistical processing to update the summary statistics 
for the affected quarter to reflect the updated sales transaction data. The 
old summary statistics should stay available until the new ones are ready.

16



17

Quality Scenarios



Quality Scenario Format
• Overview

• Brief description of what the scenario illustrates.

• System State
• Aspects of the state that affect quality 
• (i.e., information stored in the system)

• System Environment
• Significant observations about the environment that the system 

is running in.

18



Quality Scenario Format
• External Stimulus

• Environmental factors that initiate the scenario.
• (i.e., infrastructure changes or failures, security attacks, etc.)

• Required System Response
• How should it respond?
• (i.e., how should it handle a defined increase in requests)?

• Response Measure
• How we quantify a successful system response.
• Measurements, thresholds on success.

19



Example - Failure in Summary Database Instance

• Overview: How system behaves when database writes fail.
• System state: N/A
• System environment: The deployment environment is working correctly.
• External Stimulus: While writing summary statistics to the database, the 

system receives an exception indicating that the write failed (e.g., the 
database is full).

• Required system behavior: The system should immediately stop 
processing the statistics set it is working on and leave any work in 
progress behind. The system should log a fatal message to the operational 
console monitoring system and shut down.

20



Examples - Daily Data Update Increases in Size
• Overview: How the system’s end-of-day processing behaves when regular data 

volumes are suddenly greatly exceeded.

• System state: The system has summary statistics in its database for data that has 
been processed, and the system’s processing elements are lightly loaded at the 
current rate of system load.

• System environment: The deployment environment is working correctly, and data 
is arriving at a steady rate of 1,000 to 1,500 items per hour.

• External Stimulus: The data update rate on a particular day suddenly increases to 
4,000 items per hour.

• Required system behavior: When the end-of-day processing starts, the system 
should process that day’s data set for a period until the processing time exceeds a 
system-configurable limit. At that point, the system should stop processing the data 
set, discard work in process, leave the previous set of summary statistics in place, 
and log a diagnostic message (including cause and action taken) to the operational 
console monitoring system.

21



Performance Scenarios
• Overview: Description of the scenario.

• System/environment state: The system can be in various operational modes, such 
as normal, emergency, peak load, or overload.

• External Stimulus: Stimuli arrive from external or internal sources. The stimuli are 
event arrivals. The arrival pattern can be periodic, stochastic, or sporadic, 
characterized by numeric parameters.

• Required system behavior: The system must process the arriving events. This 
may cause a change in the system environment (e.g., from normal to overload 
mode). 

• Response measure: The response measures are the time it takes to process the 
arriving events (latency or a deadline), the variation in this time (jitter), the number of 
events that can be processed within a particular time interval (throughput), or a 
characterization of the events that cannot be processed (miss rate).

22



Performance Scenarios
• For real-time systems (i.e., embedded devices), 

measurements are absolute.
• Look at worst-case scenario.

• For non-real-time systems, measurements should 
be probabilistic.
• 95% of the time, the response should be N.
• 99% of the time, the response should be M.

23



Example Performance Scenario
• Overview: Check system responsiveness for adding items to shopping 

cart under normal operating conditions.
• System/environment state: Normal load is defined as deployment 

environment with no failures and less than 20 customer requests per 
second. System is communicating over good internet connection to 
acceptable client (see glossary for expected internet / client specifications).

• External Stimulus: Customer adds product to shopping cart.
• Required system behavior: Web page refreshes. Icon on right side of 

web page displays last item added to cart. If item is out of stock, cart icon 
has exclamation point overlay on top of cart icon.

• Response measure: In 95% of requests, web page is loaded and 
displayed to user within 1 second. In 99.9% of requests, web page is 
loaded and displayed to user within 5 seconds.

24



Availability Scenarios
• Overview: Description of the scenario.
• System/environment state: The state of the system when the fault or 

failure occurs may also affect the desired system response. If the system 
has already failed and is not in normal mode, it may be desirable to shut it 
down. If this is the first failure, degradation of response time or functions 
may be preferred.

• External Stimulus: Differentiate between internal and external origins of 
failure because desired system response may be different. Stimuli is an 
omission (a component fails to respond to an input), a crash (component 
repeatedly suffers omission faults), timing (a component responds but the 
response is early or late) or response (a component responds with an 
incorrect value).

25



Availability Scenarios
• Required system behavior: There are a number of possible reactions to 

a failure. Fault must be detected and isolated before any other response is 
possible. After the fault is detected, the system must recover from it. 
Actions include logging the failure, notifying selected users or other 
systems, taking actions to limit the damage caused by the fault, switching 
to a degraded mode with either less capacity or less function, shutting 
down external systems, or becoming unavailable during repair.

• Response measure: Can specify an availability percentage, or it can 
specify a time to detect the fault, time to repair the fault, times or time 
intervals where system must be available, or duration for which the system 
must be available.

26



Example Availability Scenario
• Overview: One of the client-facing web servers fails 

during transmission of client page update.
• System/environment state: System is working 

correctly under normal load. Customer has generated a 
“add item to shopping cart” post, which was routed to 
web server <X> in transaction pool.

• External Stimulus: Web server <X> crashes during 
response generation.

27



Example Availability Scenario
• Required system behavior: Response page may be corrupted on client 

browser. Load balancer component no longer receives heartbeat message 
from web server and so removes it from the pool of available servers after 
2s of missed messages, or upon next request sent to the server. Load 
balancer will remove the server from the pool of available servers. From 
client’s perspective, a page reload will be automatically routed to alternate 
server by load balancer and page will be correctly displayed.

• Response measure: Upon client-side page refresh, client state and 
display contains state after last transaction. Time for re-routed refresh is 
equivalent to “standard” refresh (<1 second 95% of the time).

28



“Good” Scenarios
• Credible

• Describes a realistic scenario.
• Valuable

• Can be directly used during architectural definition.
• Specific

• Addresses a single, concrete situation.
• Precise

• Intended user of scenario should be clear about the described 
situation and response.

• Comprehensible
• Writing should be unambiguous and free of jargon.

29



Effective Scenario Use
• Identify a focused scenario set

• Too many scenarios can be distracting.
• Prioritize no more than 15-20.

• Use distinct scenarios
• Avoid having multiple scenarios centered around near-identical 

events. They are redundant.
• Consider demands placed on the system.

• Use scenarios early
• Most impactful early in development to focus design activities on most 

important aspects of the system.

30



Effective Scenario Use
• Include system quality scenarios!

• Great potential for investigating, validating, and understanding quality 
properties.

• You will augment stakeholder-provided scenarios to consider quality.

• Include failure scenarios!
• Consider important failure cases and use scenarios to address them.

• Involve stakeholders closely
• Stakeholders may reveal scenarios you didn’t consider and have 

differing priorities than you do.

31



32

Let’s take a break!



33

Dependability



When is Software Ready for Release?
• Can we can argue that we’ve done enough?
• Provide evidence that the system is dependable.

• The goal of dependability is to establish four things 
about the system:
• That it is correct.
• That it is reliable.
• That it is safe.
• That is is robust.

34



Correctness
• A program is correct if it is consistent with its 

specifications.
• A program cannot be 30% correct. It is either correct or 

not correct.
• A program can easily be shown to be correct with respect 

to a bad specification. However, it is often impossible to 
prove correctness with a good, detailed specification.

• Correctness is a goal to aim for, but is rarely provably 
achieved.

35



Reliability
• A statistical approximation of correctness. 
• Reliability is a measure of the likelihood of correct 

behavior from some period of observed behavior. 
• Time period, number of system executions
• Measured relative to a specification and a usage profile 

(expected pattern of interaction).
• Reliability is dependent on how the system is interacted with by a 

user.

36



Safety
• Two flaws with correctness/reliability:

• Success is relative to the strength of the specification.
• Severity of a failure is not considered. Some failures are 

worse than others.
• Safety is the ability of the software to avoid 

hazards. 
• Hazard = any undesirable situation.
• Relies on a specification of hazards.

• But is only concerned with avoiding hazards, not other aspects of 
correctness.

37



Robustness
• Correctness and reliability are contingent on normal 

operating conditions.
• Software that is “correct” may still fail when the 

assumptions of its design are violated. How it fails 
matters.

• Software that “gracefully” fails is robust. 
• Consider events that could cause system failure.
• Decide on an appropriate counter-measure to ensure 

graceful degradation of services.
38



Dependability Property Relations

39

Reliable Correct Safe Robust

Correct, but not safe. 
Specification is inadequate

Safe, but not correct. 
Annoying failures can occur.

Robust, but not safe. Catastrophic 
failures can occur.

Reliable, but not correct. 
Catastrophic failures can occur.



Measuring Dependability
• Finding all faults is nearly impossible, and always 

expensive.
• We can always test more.
• Must establish criteria for when the system is 

dependable enough to release.
• Correctness hard to prove conclusively.
• Robustness/Safety important, but not enough.
• Reliability is the basis for arguing dependability.

40



41

Analyzing Reliability



What is Reliability?
• Reliability is the probability of failure-free operation 

for a specified time in a specified environment for a 
given purpose.

• This means different things depending on the 
system and the users of that system.

• Informally, reliability is a measure of how well users 
think the system provides the services they require.

42



Reliability is Measurable
• Reliability can be defined and measured.
• Reliability requirements can be specified:

• Non-functional requirements can define the number of 
failures that are acceptable during normal use of the 
system, or the time in which the system is allowed to be 
unavailable for use.

• Functional requirements can define how the software 
avoids, detects, and tolerates faults to ensure they don’t 
lead to failures. 

• Scenarios should be written for both.
43



Improving Reliability
• Reliability is improved when software faults that 

occur in the most frequently-used parts of the 
software are removed.
• Removing X% of the faults will not necessarily lead to an 

X% improvement in reliability.
• In a study, removing 60% of the faults actually led to a 3% 

reliability improvement. 

• Removing faults with serious consequences is the 
top priority.

44



Reliability Perception

User 2

User 1

User 3

Input 
Causing 
Failure

45



Software Reliability
• Cannot be defined objectively for all situations.

• Reliability measurements quoted out of context are 
meaningless.

• Requires operational profile for its definition.
• A profile of the expected pattern of software usage.

• Must consider fault consequences.
• Not all faults are equally serious.
• System is perceived as unreliable if there are more 

serious faults.
46



How to Measure Reliability
• Measuring reliability is normal when building 

hardware, but hardware metrics often aren’t 
suitable for software. 
• Based on component failures and the need to repair or 

replace a component once it has failed.
• In hardware, the design is assumed to be correct.

• Software failures are always design failures.
• Often, the system is available even though a failure has 

occurred. 
47



Availability
• The availability of a system reflects its ability to 

deliver services when available (uptime/total time).
• Takes repair and restart time into account.
• Does not tend to take incorrect computations (partial 

failures) into account.

• Availability of 0.9999 means the system is available 
99.99% of the time. 
• 0.9 = down for 144 minutes a day, 0.99 = down for 14.4 

minutes, 0.999 = down for 84 seconds, 0.9999 = down for 
8.4 seconds.

48



Probability of Failure on Demand (POFOD)

• The likelihood that a service request will result in a 
system failure (failures/requests over a period).

• POFOD = 0.001 means that 1 out of 1000 service 
requests result in a failure. 

• Should be used in situations where a failure on 
request is serious. 
• Independent of the frequency of requests.
• 1/1000 failure rate sounds risky, but if one failure per 

lifetime, it is good.
49



Rate of Occurrence of Fault (ROCOF)

• Frequency of the occurrence of unexpected 
behavior.
• Probable number of failures over a period of time or 

number of system executions.

• ROCOF of 0.02 means that 2 failures are likely per 
100 time units.

• Most appropriate metric when requests are made 
on a regular basis (such as a shop).

50



Mean Time Between Failures (MTBF)
• Measures the average length of time between 

observed failures.
• Requires the timestamp of each failure and the 

timestamp of when the system resumed service.

• MTBF of 500 means that the time between failures 
is, on average, 500 time units (or requests).

• For systems with long user sessions, you want to 
require a long MTBF.

51



Data Needed for Measurements
To assess reliability, data must be captured from users’ 
sessions with the system:
• Measure the number of failures per a given number of 

requests (used for POFOD).
• Measure the number of failures, plus total elapsed time 

or request number (ROCOF).
• Requires the timestamp of each failure and the 

timestamp of when service is resumed (MTBF).
• Measure the time to restart after a failure (availability).

52



Reliability Examples
• Provide software with 10000 requests.

• Wrong result on 35 requests, crash on 5 requests.
• What is the POFOD?

• 40 / 10000 = 0.0004
• Run the software for 144 hours 

• (6 million requests). Software failed on 6 requests.
• What is the ROCOF? The POFOD?

• ROCOF = 6/144 = 1/24 = 0.04 
• POFOD = 6/6000000 = (10-6)

53



Reliability Examples
• You advertise a piece of 

software with a ROCOF of 
0.001 failures per hour.

• However, it takes 3 hours (on 
average) to get the system up 
again after a failure.

• What is the availability per 
year?

• Failures per year:
• approximately 8760 hours per 

year (24*365)

• 0.001 * 8760 = 8.76 failures 

per year 
• Availability

• 8.76 * 3 = 26.28 hours of 
downtime per year.

• Availability = 0.997 ((8760 - 
26.28)/8760)

54



Activity - Availability
• Your customers want an availability of at least 99%, a POFOD of less than 

0.1, and ROCOF of less than 2 failures per 8 hour work period. 
• After testing your code for 7 full days, 972 requests were made. The 

product failed 64 times (37 system crashes, 27 bad calculations) and it 
took an average of 2 minutes to restart after each failure. 

• What is the availability, POFOD, and ROCOF? 
• Can we calculate MTBF?
• Is the product ready to ship?
• If not, why not?

55



Activity Solution
• What is the rate of fault occurrence?

• 64/168 hours = 0.38/hour = 3.04/8 hour work day

• What is the POFOD?
• 64/972 = 0.066

• What is the availability?
• Was down for (37*2) = 74 minutes out of 168 hours = 

74/10089 minutes = 0.7% of the time. 
• Availability is 0.993.

56



Activity Solution
• Can we calculate MTBF?

• No - need timestamps. We know how long they were 
down (on average), but not when each crash occurred.

• Is the product ready to ship?
• No. Availability/POFOD are good, but ROCOF is too low.
• Suggestions for improvement?

57



Reliability Economics
• Raising reliability is expensive. It may be cheaper to 

accept unreliability and pay for failure costs.
• The balancing point depends on social and political 

factors and the system type.
• A reputation for unreliable products may hurt more than 

the cost of improving reliability.
• Cost of failure depends on risks of failure. For business 

systems, modest reliability may be fine.

58



Assessing Reliability
• Rather than using tests to trigger faults, we can use 

tests (or scenarios) to measure reliability.
• Test inputs should match the predicted usage profile of a 

user.
• By recording errors and other measurements, we can 

calculate ROCOF, POFOD, etc.
• An acceptable level of reliability should be specified and 

the software tested until that level is reached.
• Scenarios should be repeatedly executed.

59



Operational Profiles
• Reflects how the software is used.
• Consists of classes of input and the probability of 

their occurrence. 
• Can be specified in advance if other systems exist 

that perform similar actions.
• For new systems, it is harder to specify.

• Conduct beta testing to gather initial usage data.
• Remember that usage changes over time.

60



Statistical Testing Procedure
• Form an operational profile. 
• Construct test input that reflects the profile.

• Using scenarios can help.

• Apply inputs and count the frequency and type of 
failures that occur, along with the time between 
failures.

• After observing a statistically significant number of 
failures, compute the reliability.

61



Statistical Testing Challenges
• Operation profile uncertainty

• A profile based on other systems may not be valid for 
your system.

• High cost of test input generation
• Large volume of inputs needed. Can be expensive.

• Statistical uncertainty 
• Need to generate enough failures to estimate reliability. 

This is hard when the system is already reliable. 
• Hard to estimate confidence in operational profile.

62



63

Key Points
• Defining and applying scenarios ensures that 

desired quality attributes are shown. 
• Functional scenarios define how the system responds 

to external stimuli. 
• System quality scenarios define how the system 

responds to environmental factors that affect quality 
properties.

• Should include the initial system state and environment, 
external stimulus or environment changes, and the 
required system response (and how to measure it).



Key Points
• Dependability is one of the most important software 

characteristics.
• Aim for correctness, reliability, safety, robustness.
• Often assessed using reliability.

• Reliability depends on the pattern of usage of the 
software. Different users will interact differently.
• Faulty software can be reliable for some users.

64



Key Points
• Reliability can be measured quantitatively.

• ROCOF, POFOD, Availability, MTBF

• Statistical testing is used to estimate reliability.
• Construct and execute scenarios (or concrete tests) 

multiple times.

65



66

Next Time
• Quality - Non-functional Attributes

• Performance, Scalability, Availability, Security
• No exercise session today!

• Form your teams!
• Deadline: Thursday, January 30
• E-mail me (ggay@chalmers.se) with list of team 

members, e-mail addresses, and a team name.
• Or e-mail if you want to be assigned to a team

mailto:ggay@chalmers.se



