
Lecture 3: Quality -
Non-Functional Attributes

Gregory Gay
DIT635 - January 29, 2020

2018-08-27 Chalmers University of Technology 2

Today’s Goals
• Examine non-functional quality properties.

• Performance: Ability to meet timing requirements.
• Scalability: Ability to “grow” the system to process an

increasing number of requests.
• Availability: Ability of a system to mask or repair faults

such that the cumulative service outage does not exceed
a required value over a time interval

• Security: Ability of the software to protect data and
information from unauthorized access

• How to assess each using scenarios.

3

Assessing Performance and Scalability

Performance
• The ability of the software to meet timing

requirements.
• Can we characterize the pattern of events arriving

and the pattern of responses?
• Requests served per minute.
• Variation in output time.

• Driving factor in software design.
• Often at expense of other quality attributes.
• All systems have performance requirements.

4

Scalability
• The ability to “grow” the system to process an

increasing number of requests.
• While still meeting performance requirements.

• Horizontal scalability (“scaling out”)
• Adding more resources to logical units.

• Adding a cluster of servers.
• “Elasticity” - can customers to add or remove VMs from a pool?

• Vertical scalability (“scaling up”)
• Adding more resources to a physical unit.

• Adding memory to a single computer.
5

Scalability
• How can we effectively utilize additional resources?
• Effective scalability requires that:

• Additional resources result in performance improvement.
• Did not require undue effort to add.
• Did not disrupt operations.

• Can be thought of as a form of modifiability.
• The system must be designed to scale (i.e., designed for

concurrency).

6

7

Performance and Scalability Scenarios

Performance Quality Scenarios
• Measure system performance (not user).
• Begins with an event arriving at the system.

• Responding requires resources to be consumed.

• Arrival pattern for events can be:
• Periodic (at regular time intervals)
• Stochastic (events arrive according to a distribution)
• Sporadic (unknown timing, but known properties)

• “No more than 600 per minute”
• “At least 200 ms between arrival of two events”

8

Performance Quality Scenarios
• Response measurements include:

• Latency: The time between the arrival of the stimulus
and the system’s response to it.

• Response Jitter: The allowable variation in latency.
• Throughput: Usually number of transactions the system

can process in a unit of time.
• Deadlines in processing: Points where processing must

have reached a particular stage.
• Number of events not processed because the system

was too busy to respond.
9

Measurements - Latency
• Time it takes to complete an interaction.
• Responsiveness measures how quickly the

system responds to routine tasks.
• Key consideration: user productivity.
• How responsive is the user’s device? The system?
• Measured probabilistically (... 95% of the time)
• Under a load of 350 update transactions per minute, 90%

of “open account” requests should return a reply to the
calling program within 10 seconds.

10

Measurements - Latency
• Turnaround time = time to complete larger tasks.

• Can task be completed in available time?
• Impact on system while running?
• Can partial results be produced?
• Assuming a daily throughput of 850,000 requests, the

process should take no longer than 4 hours, including
writing results to a database.

• It must be possible to resynchronize with all monitoring
stations and reset database to reflect the current state
within 5 minutes.

11

12

Measurements - Response Jitter
• Response time is non-deterministic.

• If this non-determinism can be controlled, this is OK.
• 10s +- 1s, great! 10s +- 10 minutes, not great.

• Response jitter defines how much variation in the
latency is allowed.
• Places boundaries on when a task can be completed.
• If boundaries are violated, quality is compromised.
• “All writes to the database must be completed within 120

to 150 ms.”

Measurements - Throughput
• Throughput - The workload a system can handle in

a defined time period.
• Shorter the processing time, higher the throughput.
• As load increases (and throughput rises), response time

for individual transactions tends to increase.
• With 10 concurrent users, request takes 2s.
• With 100 users, request takes 4s.

13

Measurements - Throughput
• Possible to end up in situation where throughput

goals conflict with response time goals.
• With 10 users, each can perform 20 request per minute

(throughput: 200/m).
• With 100 users, each can perform 12 per minute

(throughput: 1200/m - but at cost to response time).

14

15

Measurements - Deadlines
• Some tasks must take place at scheduled times. If

these times are missed, the system will fail.
• In a car, the fuel must ignite when the cylinder is in the

correct position.
• This places a deadline on when the fuel must ignite.

• Deadlines can be used to place boundaries on
when events must complete.

16

Measurements - Missed Events
• If the system is busy, input may be ignored.

• Or, queued until too late to matter.
• We can track how many input events are ignored

because the system is too slow to respond.
• Set upper bound on how many events can be missed in a

defined timeframe.

Performance Quality Scenarios
• For real-time systems (i.e., embedded devices),

measurements should be absolute.
• Look at worst-case scenario.

• For non-real-time systems, measurements should
be probabilistic.
• 95% of the time, the response should be N.
• 99% of the time, the response should be M.

17

Specifying Response Time
• Response time targets require a defined load.

• One transaction in 3s is easy if that is the only request.
• Can you still hit 3s if there are 500 transactions per second?

• Requirements must specify context and a clearly-defined
response time goal.

• Also define when a transaction starts and ends.

• Why probabilistic definitions are important.
• Not all requests take the same amount of time, even with

constant load.
18

Generic Performance Scenario
• Overview: Description of the scenario.
• System/environment state: System can be in various

operational modes, such as normal, emergency, peak
load, or overload.

• External Stimulus: Stimuli arrive from external or
internal sources. The stimuli are event arrivals. The
arrival pattern can be periodic, stochastic, or sporadic,
characterized by numeric parameters.

19

Generic Performance Scenario
• Required system behavior: The system must process

arriving events. This may cause a change in the system
environment (e.g., from normal to overload mode).

• Response measure: The response measures are the
time it takes to process the arriving events (latency or a
deadline), the variation in this time (jitter), the number of
events that can be processed within a particular time
interval (throughput), or a characterization of the events
that cannot be processed (miss rate).

20

Bad Performance Scenario
• Overview: How the server handles concurrent requests with

graceful response times.
• System/environment state: Application is packaged and deployed

on the server. The server process is up and ready to serve
requests.

• External Stimulus: Concurrent requests arrive in high volume.
• Required system behavior: Server spawns new threads and

handle each request concurrently based on resources configured
(like available memory, CPU speed etc.)

• Response measure: Server successfully handles all requests.
21

Good Performance Scenario
• Overview: Check system responsiveness for adding items to shopping

cart under normal operating conditions.
• System/environment state: Normal load is defined as deployment

environment with no failures and less than 20 customer requests per
second. System is communicating over good internet connection to client.

• External Stimulus: Customer adds product to shopping cart.
• Required system behavior: Web page refreshes. Icon on right side of

web page displays last item added to cart. If item is out of stock, cart icon
has exclamation point overlay on top of cart icon.

• Response measure: In 95% of requests, web page is loaded and
displayed to user within 1 second. In 99.9% of requests, web page is
loaded and displayed to user within 5 seconds.

22

Scalability Scenarios
• Ability to address more requests is often part of

performance scenarios.
• Scenarios assessing scalability directly (the ability

to adjust available resources to the system) deal
with the impact of adding or removing resources.

• Response measures reflect:
• Changes to performance.
• Changes to availability.
• Load assigned to existing and new resources.

23

Example Scalability Scenario
• Overview: Addition of new hardware improves credit

card transaction speed.
• System/environment state: Before addition of new

hardware, 95% of credit card transactions were
completed within 10 seconds, 99.9% within 15s.
Additional server has doubled threads available for
processing requests. System is under normal load, with
normal connectivity.

• External Stimulus: Customer completes a purchase.
24

Example Scalability Scenario
• Required system behavior: Order confirmation is

displayed, with a list of items purchased, expected
arrival date, and total cost of items.

• Response measure: In 95% of requests, web page is
loaded and displayed to user within 5 second. In 99.9%
of requests, web page is loaded and displayed to user
within 7.5 seconds.

25

Key Points
• Performance is about management of resources in

the face of demand to achieve acceptable timing.
• Performance usually measured in terms of throughput

and latency.

• Performance can be improved by reducing demand
or by managing resources.
• Reducing demand will have the side effect of reducing

fidelity or missing some requests.
• Managing resources can be done through scheduling,

replication, or just increasing resources.
26

Key Points
• Scalability is the ability to “grow” the system to

process an increasing number of requests.
• While still meeting performance requirements.
• Assessed as part of performance.

• How can we effectively utilize additional resources?
• Effective scalability requires:

• New resources result in a performance improvement.
• New resources did not require undue effort to add.
• New resources did not disrupt operations.

27

28

Let’s take a break.

29

Assessing Availability

Availability
• Is the software there and ready to carry out its task

when you need it to be?
• Encompasses reliability and repair.

• Does the system tend to show correct behavior?
• Can the system recover from an error?

• Availability refers to the ability of a system to mask
or repair faults such that the cumulative service
outage does not exceed a required value over a
time interval.

30

Availability
• Closely related to security and performance.

• Security: DDOS attack can make system unavailable.
• Performance: Has the system failed, or is it recovering or

limiting the damage from a hazard?

• Availability is about minimizing outage time by
mitigating the effect of faults.
• A failure is a visible deviation from expected behavior

(crash, incorrect output).
• Failures caused by faults - mistakes in the source code.

31

Availability
• Achieving availability requires understanding the nature of the

failures that can arise.
• Faults/failures can be prevented, tolerated, removed, or forecasted.

• How are faults detected?
• How frequently do failures occur?
• What happens when a failure occurs?
• How long can the system be out of operation?
• When can faults or failures occur safely?
• Can faults or failures be prevented?
• What notifications are required when failure occurs?

32

Measuring Availability
• Time to repair is the time until the failure is no

longer observable.
• “Observability” can be hard to define.

• Stuxnet caused problems for months before being
noticed. How does that impact availability?

• Software can remain partially available more easily
than hardware.

• If code containing a fault is executed, but the
system is able to recover, there was no failure.

33

Measuring Availability
• The availability of a system reflects its ability to

deliver services when available (uptime/total time).
• Takes repair and restart time into account.
• Scheduled downtime often does not count.

• Availability of 0.9999 means the system is available
99.99% of the time.
• 0.9 = down for 144 minutes a day, 0.99 = down for 14.4

minutes, 0.999 = down for 84 seconds, 0.9999 = down for
8.4 seconds.

34

Probabilistic Availability
• (alternate definition)
• Availability is the probability that the system will

provide a service within required bounds over a
specified time interval.
• Availability = MTBF / (MTBF + MTTR)

• MTBF: Mean time between failures.
• MTTR: Mean time to repair

35

36

Availability Scenarios

Availability Quality Scenarios
• The ability of the system to mask or repair faults

such that the outage period does not exceed a
required value over a time period.

• Measure how the system responds to failure.
• When the system breaks, how long does it take to

resume normal operation?

• Stimuli should always be a failure.

37

Availability Quality Scenarios
• Response measures should always include a

measure of availability:
• availability percentage (must be at least 0.9999)
• time to detect or repair fault
• time system in degraded mode

• (95% of the time, must be back online within five minutes)
• Can be either explicit (per-execution, repeat multiple

times) or probabilistic (averaged over all repeats).
• Often done probabilistically.

38

Availability Quality Scenarios
• Scenarios must distinguish physical failures in the

system and the software’s perception of the failure.
• Do not assume software is omniscient.

• Scenarios tend to deal with:
• Failure of a physical component or external system.
• Reconfiguration of the physical system.
• Maintenance or reconfiguration of the software.

39

Generic Availability Scenario
• Overview: Description of the scenario.
• System/environment state: The state of the system

when the fault or failure occurs may also affect the
desired system response.
• If the system has already failed and is not in normal

mode, it may be desirable to shut it down.
• If this is the first failure, degradation of response

time or functions may be preferred.

40

Generic Availability Scenario
• External Stimulus: Differentiate between internal and

external origins of failure because desired system
response may be different.

• Stimuli is:
• An omission (a component fails to respond to an input),
• A crash (component repeatedly suffers omission faults)
• timing (component responds but response is early/late)
• response (a component responds with incorrect value).

41

Generic Availability Scenario
• Required system behavior: There are a number of possible

reactions to a failure. Fault must be detected and isolated
before any other response is possible. After the fault is
detected, the system must recover. Actions include:

• Logging the failure
• Notifying selected users or other systems
• Taking actions to limit the damage caused by the fault
• Switching to a degraded mode with less capacity or less function
• Shutting down external systems, or becoming unavailable during

repair.

42

Generic Availability Scenario
• Response measure:

• Can specify an availability percentage
• Can specify a time to detect the fault, time to repair

the fault, times or time intervals where system must
be available, or duration for which the system must
be available.

43

Bad Availability Scenario
• Overview: How the server manages multiple applications with

desired isolation.
• System/environment state: Multiple applications (unrelated) are

deployed on the server. The server is up and running.
• External Stimulus: User(s) establishes session with each of these

applications.
• Required system behavior: Server deploys each application in its

own context which can be configured to share or not share any
application specific data between them.

• Response measure: Applications are isolated.
44

Good Availability Scenario
• Overview: How the system handles additional beer taps being added to

the dispensing system.
• System/environment state: The system is operating normally.
• External Stimulus: A user powers up a new Kegboard on the network

with six additional taps.
• Required system behavior: The kegboards send init messages to the

central Kegbot server. The server interrogates the kegboards and adds the
additional taps to the inventory of taps. The system continues to service
the existing taps without interruption.

• Response measure: There is no interruption of service to existing taps.
Within 1 second, the new kegboard is added to the administrative interface
on the KegBot web server for administraton configuration.

45

Availability Scenario 2
• Overview: One of the client-facing web servers fails

during transmission of client page update.
• System/environment state: System is working

correctly under normal load. Customer has generated a
“add item to shopping cart” post, which was routed to
web server <X> in transaction pool.

• External Stimulus: Web server <X> crashes during
response generation.

46

Availability Scenario 2
• Required system behavior: Response page may be corrupted on

client browser. Load balancer component no longer receives
heartbeat message from web server and so removes it from the
pool of available servers after 2s of missed messages, or upon
next request sent to the server. Load balancer will remove the
server from the pool of available servers. From client’s perspective,
a page reload will be automatically routed to alternate server by
load balancer and page will be correctly displayed.

• Response measure: On client-side page refresh, client state and
display contains state after last transaction. Time for re-routed
refresh is equivalent to “standard” refresh (<1 second 95% of the
time).

47

Key Points
• Availability is the ability of the system to be

available for use, especially after a failure.
• Failures must be recognized or prevented.

• System response can range from “ignore it” to “keep on
going as if it didn’t occur”.

48

49

Let’s take a break.

50

Assessing Security

“Your personal identity isn’t worth quite as much
as it used to be - at least to thieves willing to swipe
it. According to experts who monitor such markets,
the value of stolen credit card data may range from
$3 to as little as 40 cents.

That’s down tenfold from a decade ago - even
though the cost to an individual who has a credit
card stolen can soar into the hundreds of dollars.”

Taylor Buley, Forbes.com

51

Security
• The ability of the software to protect data and

information from unauthorized access.
• While still providing access to people and systems

that are authorized.
• Can we protect software from attacks?

• Any action taken against a computer system with the
intent of causing harm.

• Unauthorized access attempts.
• Attempts to deny service to legitimate users.

52

Security
• Processes that allow owners of

resources to control access.
• Actors (systems or users).
• Resources are sensitive elements,

operations, and data of the system.
• Policies define legitimate access to

resourced.
• Enforced by security mechanisms

used by actors to gain access to
resources.

53

Actors

Mechanisms
Policies

Resources

Security Characterization (CIA)
• Confidentiality

• Data and services protected from unauthorized access.
• A hacker cannot access your tax returns on an IRS server.

• Integrity
• Data/services not subject to unauthorized manipulation.

• Your grade has not changed since assigned.

• Availability
• The system will be available for legitimate use.

• A DDOS attack will not prevent your purchase.
54

Supporting CIA
• Authentication - Verifies identities of all parties.

• Did the e-mail really come from the bank?
• Nonrepudiation - Guarantees that the sender of a

message cannot deny sending the message, and the
recipient cannot deny receiving the message.
• You cannot deny ordering the book, and Amazon cannot

claim you never ordered.
• Authorization - Grants privilege of performing a task.

• The bank authorizes you to check balances.
55

Security Approaches
• Achieving security relies on:

• Detecting attacks.
• Resisting attacks.
• Reacting to attacks.
• Recovering from attacks.

• Objects being protected are:
• Data at rest.
• Data in transit.
• Computational processes.

56

Security is Risk Management
• Not simply secure/not secure.

• All systems will be compromised.
• Try to avoid attack, prevent

damage, and quickly recover.
• Balance risks against cost of

guarding against them.
• Set realistic expectations!

57

58

Security Scenarios

Security Quality Scenarios
• Measure of the system’s ability to protect data from

unauthorized access while still providing service to
authorized users.

• Scenarios measure response to attack.
• Stimuli are attacks from external systems/users or

demonstrations of policies (log-in, authorization).

• Responses: auditing, logging, reporting, analyzing.

59

Generic Security Scenario
• Overview: Description of the scenario.
• System/environment state:

• The attack can come when the system is online or offline
• Connected to or disconnected from a network
• Behind a firewall or open to a network
• Fully operational, partially operational, or not operational.

60

Generic Security Scenario
• External Stimulus:

• The source of the attack may be either a human or
another system. It may have been previously identified or
may be currently unknown.

• A human attacker may be from outside the organization
or from inside the organization.

• The stimulus is an attack (unauthorized attempt to
display data, change or delete data, access services,
change the system’s behavior, or reduce availability).

61

Generic Security Scenario
• Required system behavior:

• Should ensure that transactions are such that:
• Data/services protected from unauthorized access
• Data/services not manipulated without authorization
• Parties to a transaction are identified and cannot

repudiate their involvement
• Data, resources, and system services will be

available for legitimate use.

62

Generic Security Scenario
• Required system behavior:

• The system should also track activities by:
• Recording access or modification and attempts to

access data, resources, or services
• Notifying appropriate entities (people or systems)

when an apparent attack is occurring.

63

Generic Security Scenario
• Response Measure: Measures of a system’s

response include:
• How much of a system is compromised when a particular

component or data value is compromised.
• How much time passed before an attack was detected
• How many attacks were resisted
• How long it took to recover from a successful attack
• How much data was vulnerable to a particular attack.

64

Bad Security Scenario
• Overview: How the server restricts damage when someone

maliciously gains control over it.
• System/environment state: Multiple applications deployed on the

server. Servers running and serving requests
• External Stimulus: One application deployed is breached.
• Required system behavior: Server can be configured with

different privileges, providing more granular control over their
access to system resources and potentially preventing one
breached application from allowing access to others.

• Response measure: Remaining applications are not breached.
65

Example Security Scenario
• Overview: A disgruntled employee at a remote location

attempts to change their pay rate.
• System/environment state: The system is operating

normally, without problems. 100 active users are logged into
the system.

• External Stimulus: An employee has discovered the
location of a configuration file storing all employee pay rates.
They log in (using their credentials) and use a stolen passkey
to open the locked file. They modify the file with a new rate
and save changes.

66

Example Security Scenario
• Required system behavior: The system maintains an

audit trail. The user is able to modify the file, as they
have the passkey. However, the log records the date,
time, identify of user, and modification made. System
administrators are informed of the modification.

• Response measure: The correct data is restored within
a day and the source of tampering has been identified
and reported.

67

Example Security Scenario 2
• Overview: A user attempts to authenticate with the beer dispensing

system (to purchase beer) but the authentication fails due to
unrecognized auth token or due to system unavailability.

• System/environment state: There is a valve installed on the tap.
There is a flow meter installed on the tap. There is a buzzer
installed on the Kegboard. Authentication hardware (RFID or
one-wire) is installed on the Kegboard. There is no pour in
progress. The system is operating normally, without problems.

• External Stimulus: A user presents an auth token to the
authentication hardware on the Kegboard.

68

Example Security Scenario 2
• Required system behavior: The auth token is

unrecognized, and the valve is not opened. An audible
sound is played from the buzzer, indicating
authentication failure.

• Response measure: No beer is dispensed.

69

Key Points
• Attacks against a system are attacks against the

confidentiality, integrity, or availability of a system or
its data.
• Confidentiality: Keeping data away from those who

shouldn’t have it.
• Integrity: No unauthorized modifications or deletion of

data.
• Availability: System is accessible to authorized users.

70

Key Points
• Identifying, authenticating, and authorizing actors

are how we determine who is entitled to access the
system.

• No tactic is foolproof. Systems will be
compromised.
• Important to come up with as many scenarios as you can

71

72

Next Time
• Testing Fundamentals

• Phases, basic types of testing, terminology
• Optional reading: Pezze & Young, Ch 1-4

• Form your teams!
• Deadline: Thursday, January 30
• E-mail me (ggay@chalmers.se) with list of team

members, e-mail addresses, and a team name.
• Or e-mail if you want to be assigned to a team

mailto:ggay@chalmers.se

