CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Lecture 5: Unit Testing and Test
Automation

Gregory Gay
DIT635 - February 5, 2020

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

 \We now know what tests *are®.
* Soon, we'll learn how to design tests.
« (exploration -> requirements - > code structure)

« Today - some of the technical detail.
* How to write unit tests in JUnit.
« Executing tests as part of a build script.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Executing Tests

 How do you run test cases on the program?

* You could run the code and check results by hand.
 Please don’t do this.

 Humans are slow, expensive, and error-prone.
« Exception - exploratory testing.
* Test design requires effort and creativity.
» Test execution should not.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Automation

« Test Automation is the development of software to
separate repetitive tasks from the creative aspects
of testing.

« Automation allows control over how and when tests

are executed.
« Control the environment and preconditions.
« Automatic comparison of predicted and actual output.
« Automatic hands-free re-execution of tests.

|
{
%%
/N
7

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing Requires Writing Code

« Testing cannot wait for the system to be complete.

 The component to be tested must be isolated from the
rest of the system, instantiated, and driven using method
invocations.

« Untested dependencies must be stubbed out with reliable
substitutions.

* The deployment environment must be simulated by a
controllable harness.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Scaffolding

« Test scaffolding is a set of programs written to
support test automation.
« Not part of the product
« Often temporary

* Allows for:
« Testing before all components complete.
» Testing independent components.
« Control over testing environment.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Scaffolding

* Adriver is a substitute for a main or calling

program.
 Test cases are drivers.

* A harness is a substitute for all or part of the
deployment environment.

* Astub (or mock object) is a substitute for system
functionality that has not been completed.

* Support for recording and managing test execution.

CHALMERS | NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

e Simulates the execution environment.
e Can control network conditions,
environmental factors,
operating systems.

Harness

\ Ganials-endonmnant

Y

Driver

<
Program UnitJ Stubs

Provide functionality

e [emplates that provide functionality

T . Produces actualfputput " .
Initializes objects [and allow testing in isglation

Initializes parameter variables utput | Oracl
- . N racie
Performs the test Comparison

Inputs commands

A

Performs any necessary
cleanup steps.

Produces expected output
v

FGSU|t e | Checks the correspondence between the produced and
i expected output and renders a test verdict.

{8%)) UNIVERSITY OF GOTHENBURG

Writing an Executable Test Case

Test Input

* Any required input data.
Expected Output (Test Oracle)

« What should happen, i.e., values or exceptions.
Initialization

* Any steps that must be taken before test execution.

Test Steps
 Interactions with the system (such as method calls), and output
comparisons.
Tear Down

* Any steps that must be taken after test execution to prepare for the
next test.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Writing a Unit Test

JUnit is a Java-based toolkit
for writing executable tests. o ,
public int evaluate (String

* Choose a target from the expression) {
code base. int sum = 0;
- Write a “testing class” for (String summand:
containing a series of unit
sum += Integer.valueOf(summand);
tests centered around return sum:
testing that target. }

public class Calculator {

expression.split("\\+"))

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Writing a Unit Test

import static

org.junit.jupite

import org.junit
public c
public class CalculatorTest {
@Test
void testEvaluate Valid_ShouldPass(){

public

int sum = 0;
? Calculator calculator = new Calculator();

for (String summand: - int sum = calculator.evaluate("1+2+3"); -

expression.split assertEquals(6, sum);

sum += Integer.valueOf(summand); calculator = null; _

return sum;

-

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Shared Initialization

@BeforeEach annotation defines a common test
Initialization method:

@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();
this.registration.setUser(“ggay”);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Teardown Method

@AfterEach annotation defines a common test tear
down method:

@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();
this.registration = null;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

More Test Fixtures

@BeforeAll
° @BeforeA" deﬁnes public static void setUpClass() {
initialization to take ransgediesource = e
ManagedResource();
place before any }
tests are run.
. @AfterAll
’ @AfterA" deflnes public static void tearDownClass()
tear down after all throws IOException {
tests are done. myManagedResource.close();
myManagedResource = null;
}

UNIVERSITY OF GOTHENBURG

Test Skeleton

@Test annotation defines a single test:

Type of scenario, and expectation on outcome.
@Test l.e., testEvaluate NullInput()

public void test<Feature or Method> <Context>() {
//Define Inputs
try{ //Try to get output.

}catch(Exception error){
fail("Why did it fail?");
}

//Compare expected and actual values through assertions or through if
statements/fails

}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assertions

Assertions are a "language” of testing - constraints that
you place on the output.

e assertEquals, assertArrayEquals
e assertFalse, assertTrue

e assertNull, assertNotNull

e assertSame,assertNotSame

&%) CHALMERS NIVERSITY OF GOTHENBURG

assertEquals

fzzic void testAssertEquals() { ¢ CompareS tWO itemS fOI'
assertEquals("failure - strings are not equality.

equal”, "text”, “text"); e For user-defined classes,

} relies on .equals method.

aTest o Compare field-by-field

o assertEquals(studentA.getName(),
studentB.getName())
rather than

byte[] actual = "trial".getBytes(); assertEquals(studentA, studentB)

assertArrayEquals("failure - byte arrays ® assertArrayEquaIS

not same", expected, actual); .
} compares arrays of items.

public void testAssertArrayEquals() {
byte[] expected = "trial".getBytes();

{8%)) UNIVERSITY OF GOTHENBURG

assertFalse, assertTrue

@Test
public void testAssertFalse() {

e Takein a string and a

assertFalse("failure - should be false",

(getGrade(studentA, “DIT635”).equals(“A”)); boolean expression.

} e Evaluates the expression
orest and issues pass/fail based
public void testAssertTrue() { on outcome.

assertTrue("failure - should be true", Py Used to CheCk
(getOwed(studentA) > 0)); .
, conformance of solution to
expected properties.

{8%)) UNIVERSITY OF GOTHENBURG

assertSame, assertNotSame

@Test
public void testAssertNotSame() {

assertNotSame("should not be same Object", g CheCkS Whether tWO
studentA, new Object()); .
) objects are clones.
e Are these variables aliases
@rest for the same object?
public void testAssertSame() {
Student studentB = studentA; O assertEquaIS useS

assertSame("should be same", studentA, equaIS()

;t“de”tB" o assertSame uses ==

(&%) UNIVERSITY OF GOTHENBURG

assertNull, assertNotNull

@Test
public void testAssertNotNull() {
assertNotNull("should not be null",

. e Take in an object and
new Object());

) checks whether it is
null/not null.

@Test e Can be used to help

public void testAssertNull() { dlagnose and VOld nu”

assertNull("should be null", null); pointer exceptions.

(&%) UNIVERSITY OF GOTHENBURG

Grouping Assertions

@Test

void groupedAssertions() {

Person person = Account.getHolder(); @ Grouped assertions are

assertAll("person", executed.
() -> assertEquals("John”, o Failures are reported
person.getFirstName()), together
() -> assertEquals("Doe",
person.getLastName())); © Preferred Way tO
} compare fields of two

data structures.

CHALMERS |) UNIVERSITY OF GOTHENBURG

assertThat - R

either - pass if one of these properties is true.

@Test
public void testAssertThat{

@

@ 0

@ & & ¢

assertThat("albumen", both(containsString("a")).and(containsString("b")));

assertThat(Arrays.asList("one", "two", "three"), hasItems("one", "three"));

assertThat(Arrays.asList(new String[] { "fun", "ban", "net" }),
everyItem(containsString("n")));

assertThat("good", allOof(equalTo("good"), startsWith("good")));

assertThat("good", not(allOf(equalTo("bad"), equalTo("good"))));

assertThat("good", anyOf(equalTo("bad"), equalTo("good")));

assertThat(7, not(CombinableMatcher.<Integer>
either(equalTo(3)).or(equalTo(4))));

—
N

{8%)) UNIVERSITY OF GOTHENBURG

Testing Exceptions

@Test e \When testing error
void exceptionTesting() { hand“ng we eXpeCt

exceptions to be thrown.
IndexOutOfBoundsException.class, o assertThrows checks
() -> { new ArrayList<Object>().get(0);} whether the code block
Y throws the expected
exception.
exception.getMessage()); © assertEquaIs can be
} used to check the
contents of the stack
trace.

Throwable exception =

assertThrows (

assertEquals("Index:0, Size:0",

y CHALMERS | UNIVERSITY OF GOTHENBURG

Testing Performance

@Test
void timeoutExceeded() f{
assertTimeout(ofMillis(10), P assertTimeout can be
() -> { Order.process(); }); used to impose a time
} - :
grest limit on an action.

void timeoutNotExceededWithMethod() { O Time limit stated using ofMilis(..),
ofSeconds(..), ofMinutes(..)

o Result of action can be captured as

assertTimeout (ofMinutes(2), well, allowing checking of result

correctness.

String greeting =

AssertionsDemo: :greeting);

assertEquals("Hello, World!", greeting);

}

«, CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG
Activity - Unit Testing
You are testing the following method:

public double max(double a, double b);

Devise three executable test cases for this method in
the JUnit notation. See the attached handout for a
refresher on the notation.

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

@Test @Test
public void aLarger() { public void bothEqual() {
double a = 16.0; double a = 16.0;
double b = 10.0; double b = 16.0;
double expected = 16.90; double expected = 16.0;
double actual = max(a,b); double actual = max(a,b);
assertTrue(“should be larger”, actual>b); assertEquals(a,b);
assertEquals(expected, actual); assertEquals(expected, actual);
} }
@Test @Test
public void bLarger() { public void bothNegative() {
double a = 10.0; double a = -2.0;
double b = 16.0; double b = -1.0;
double expected = 16.0; double expected = -1.0;
double actual = max(a,b); double actual = max(a,b);
assertTrue(“b should be larger”, b>a); assertTrue(“should be negative”,actual<®);
assertEquals(expected, actual); assertEquals(expected, actual);
} }

{8%)) UNIVERSITY OF GOTHENBURG

Best Practices
« Use assertions instead of print statements

@Test

public void testStringUtil Bad() {

String result = stringUtil.concat("Hello ", "World"); ®
System.out.println("Result is "+result);

}

@Test
public void testStringUtil_Good() {

String result = stringUtil.concat("Hello ", "World"); °
assertEquals("Hello World", result);

}

* The first test will always pass (no assertions)

« Developer would need to manually verify the output.

&) CHALMERS | UNIVERSITY OF GOTHENBURG

Best Practices

« Even if code is non-deterministic, tests should give deterministic results.

public long calculateTime(){
long time = ©;
long before = System.currentTimeMillis();

veryComplexFunction();
long after = System.currentTimeMillis();

time = after - before;
return time;

}
« Each time this method is executed, the result will differ.

« Tests for this method should not specify the exact time returned, but
properties of a “good” execution.

« The time should be positive, not negative or 0.
« Couple place a range on the output.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Best Practices

» Test negative scenarios and boundary cases, in
addition to positive scenarios.
« Can the system handle invalid data?
« Method expects a string of length 8, with A-Z,a-z,0-9.

Try non-alphanumeric characters. Try a blank value. Try strings
with length < 8, > 8

* Boundary cases test extreme values.

 |f method expects numeric value 1 to 100, try 1 and 100.
« Also, 0, negative, 100+ (negative scenarios).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices

* Test only one code unit at a time.
« Capture each scenario in a separate test case.

* Method with two parameters: separate one null, other
null, both null, and “happy path” into different test cases.

* Helps in isolating and fixing faults.

* Don’t use unnecessary assertions.

« Unit tests are a specification on how behavior should
work, not a list of observations.

« Aim for each unit test method to perform exactly one
assertion - ensure all assertions are related in purpose.

,{1’_‘-‘ fmm.,%c
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Best Practices

 Make each test independent of all others.

Use @BeforeEach and @AfterEach to set up state and clear state
before the next test case.

* Create unit tests to target exceptions.

 If an exception should be thrown based on certain input, make
sure the exception is thrown.

AAMN
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Best Practices

 Name test cases clearly and consistently.

 Name tests after what they do and test.
« Name should encode operation, scenario, and expectation:
« TestCreateEmployee Nullld_ShouldThrowException
« TestCreateEmployee Negativeld ShouldThrowException
« TestCreateEmployee Duplicateld ShouldThrowException
« TestCreateEmployee Validld _ShouldPass

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Scaffolding

« Stubs and drivers are code written as replacements
other parts of the system.
« May be required if pieces of the system do not exist.
« Scaffolding allows control over test execution and
greater observability to judge test results.
« Simulate dependencies and test components in isolation.
 Ability to set up specialized testing scenarios.

 Ability to replace part of the program with a version more
suited to testing.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Replacing Interfaces

« Scaffolding can be complex - can replace any
portion of the system.

 If an interface does not allow control or

observability - write scaffolding to replace it.
« Allow inspection of previously-private variables.
* Replace a GUI with a machine-usable interface.

« May be useful after testing.
Expose a command-line interface for scripting.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Generic vs Specific Scaffolding

« Simplest driver - run a single specific test case.

* More complex:
« Common scaffolding for a set of similar tests cases,
« Scaffolding that can run multiple test suites for the same
software (i.e., load a spreadsheet of inputs and run then).
« Scaffolding that can vary a number of parameters
(product family, OS, language).

« Balance of quality, scope, and cost.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Unit Testing - Object Mocking

WeatherData
Components may depend on
. . t t
other, unfinished (or untested) windSpeed
components. You can mock those | e - Thermomete "

lastReadingTime

components.

* Mock objects have the same interface
as the real component, but are

collect()
summarize(time)

[g

shutdown()

i tart
hand-created to simulate the real Mock_Thermometer | restart()
component. :her_identifier

. emperature
 (Can also be used to simulate -~
abnormal operation or rare events. shutdown() | 98N
restart() return 98;
}

#6) CHALMERS | @‘}} UNIVERSITY OF GOTHENBURG

Mocklng Example (Mocklto)

Declare a mock object
LinkedList mList = mock(LinkedList.class);

« Specify method behavior:
when(mList.get(0)).thenReturn(“first”);

« Returns “first”: mList.get(9);
 Returns null: mList.get(99);
» Because behavior for “99” is not specified.
when(mList.get(anyInt()).thenReturn(“element”);

e mList.get(Q), mList.get(99) both return
“element’, as all input are specified.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Mocking Within a Test

@test

public void temperatureTest(){
Thermometer mockTherm = mock(Thermometer.class);
when(mockTherm.get()).thenReturn(98);
WeatherData wData = new WeatherData();
wData.collect(mockTherm);
assertEquals(98,wData.temperature);

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Build Systems

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Systems

« Building software, running test cases, and
packaging and distributing the executable are very
common, effort-intensive tasks.

» Building and deploying the project should be as
easy as possible.

* Build systems ease this process by automating as
much of it as possible.
* Repetitive tasks can be automated and run at-will.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Systems

* Build systems allow control over code compilation,
test execution, executable packaging, and
deployment to production.

» Script defines actions that can be automatically
iInvoked at any time.

* Many frameworks for build scripting.

* Most popular for Java include Ant, Maven, Gradle.
« Gradle is very common for Android projects.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

« Validate the project is correct and all necessary information
Is available

« Compile the source code of the project.

« Test the source code using a suitable unit testing framework.

* Run unit tests against classes and subsystem
integration tests against groups of classes.

» Take the compiled code and package it in its distributable
format, such as a JAR.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Build Lifecycle

Validate -+ Compile Test - Package —~ Verify — Install —~ Deploy

« Verify - run system tests to ensure quality criteria
are met.
« System tests require a packaged executable.

 This is also when tests of non-functional criteria like
performance are executed.

 Install the package for use as a dependency in
other projects locally.

* Deploy the package to the installation environment.

#8) CHALMERS | (&% UNIVERSITY OF GOTHENBURG

Apache Ant
* Ant (Another Neat Tool) is a build system for Java.

 Build scripts define a set of targets that can be
executed on command.

« Targets can correspond to lifecycle phases or other
desired automated tasks.

« Targets can trigger other targets.
 Build scripts written in XML.

« Platform neutral, But can invoke platform-specific commands.
« Human and machine readable.

Created automatically by many IDEs (Eclipse).

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

A Basic Build Script

"1.0"?>
"Hello World Project"” default = "info">

<?xml version
<project name

<target name = "info">
<echo>Hello World - Welcome to Apache Ant!</echo>
</target>
</project>

 File typically named build.xml, and placed in the base
directory of the project.
 Build script requires project element and at least one target.
* Project defines a name and a default target.

« This target prints project information.
e Echo prints information to the terminal.

#8) CHALMERS |

) UNIVERSITY OF GOTHENBURG

Targets

<target
<target
<target
<target

name
name
name
name

"deploy" depends = "package"> </target>
"package" depends = "clean,compile"> </target>
"clean" > </target>

"compile" > </target>

« Atarget is a collection of tasks you want to run in a
single unit.
» Targets can depend on other targets.

If you issue the deploy command, it will complete the
package target first, which will complete clean and
compile first.

Dependencies are denoted using the depends attribute.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Targets

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean” > </target>

<target name = "compile" > </target>

* Target attributes:
 name defines the name of the target (required)
 depends lists dependencies of the target.
* description is used to describe the target.
e if and unless allow execution of the target to depend on

a conditional attribute.
« Execute the target if the attribute is true, or execute is unless the
attribute is true.

6) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Executing targets

<?xml version = "1.8"?> Buildfile: build.xml
<project name = "Hello World Project” default = "info"> T [echo] Hello World - Welcome to Apache
<target name = "info"> Ant!
<echo>Hello World - Welcome to Apache Ant!</echo> BUILD SUCCESSFUL
</target> Total time: © seconds
</project>

* In the command line, invoke:
* ant <target name>

 If no target is supplied, the default will be executed.

* In this case, ant and ant info will give the same result
because info is the default target.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Properties

XML does not natively allow variable declaration.

 Instead, Ant allows the creation of property elements,
which can be referred to by name.

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">

<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>

</project>

CHALMERS | UNIVERSITY OF GOTHENBURG

Properties

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
<property name = "sitename" value = "http://cse.sc.edu"/>
<target name = "info">
<echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
</target>
</project>

* Properties have a name and a value.
« Property value is referred to as ${property name}.

* Ant pre-defines ant.version, ant.file (location of the build
file), ant.project.name, ant.project.default-target, and

other properties.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Property Files

* A separate file can be used to define a set of static
properties.

* Allows reuse of a build file in different execution
environments (development, testing, production).

« Allows easy lookup of property values.
« Typically called build.properties and stored in the
same directory as the build script.
» Lists one property per line: <name> = <value>
e Comments can be added using # <comment>

UNIVERSITY OF TECHNOLOGY

CHALMERS | UNIVERSITY OF GOTHENBURG

Property Files

* build.xml

<?xml version = "1.0"?>
<project name "Hello World Project" default = "info">
<property file = "build.properties"/>

<target name = "info">
<echo>You are at ${sitename}, version ${buildversion}.</echo>
</target>
</project>

* build.properties
The Site Name

sitename = http://cse.sc.edu
buildversion = 3.3.2

&%) CHALMERS NIVERSITY OF GOTHENBURG

« Conditions are properties whose value is

COnd |t|0ns determined by and and or expressions.

* And requires each property to be true.

<target name = "myTarget" depends = .
smyTarget. check” if = * In this case, both foo.txt and bar.txt
"myTarget.run"> </target> must exist_
<tarfi§n2i$§0; ;’:ﬁ;::i;t:hec"” « (available is an Ant command that
"myTarget. run"> checks for file existence)

<and> e Or requires only one listed property to

<available file =

"foo.txt"/> be true'
i / <available file = « Calling target myTarget.check creates
"bar.txt"/> .

</and> a property (myTarget.run) that is true

</condition> if both files are present.

</target>

 When myTarget is called, it will run
only if myTarget.run is true.

{8%)) UNIVERSITY OF GOTHENBURG

Ant Utilities

* Fileset generates a list of files matching set criteria for
iInclusion or exclusion.
* ™ means that the file can be in any subdirectory.
« * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
<include name RE/* Java'/>

<exclude name = "**/*Stub*"/>
</fileset>

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Ant Utilities

e Path is used to represent a classpath.
- pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">

<pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>

<fileset dir = "1lib"> <include name = "**/* jar"/> </fileset>
</path>

CHALMERS | UNIVERSITY OF GOTHENBURG

Building a Project

<project name = "Hello-World" basedir = "." default = "build">

<property name = "src.dir" value = "src"/>
<property name = "build.dir" value = "target"/>
<path id = "master-classpath">
<fileset dir = "${src.dir}/1ib"> <include name = "*.jar"/> </fileset>
<pathelement path = "${build.dir}"/>
</path>
</project>

* Properties src.dir and build.dir define where the source files
are stored and where the built classes are deployed.

« Path master-classpath includes all JAR files in the lib folder
and all files in the build.dir folder.

CHALMERS | UNIVERSITY OF GOTHENBURG

Building a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "clean" description = "Clean output directories">
<delete>
<fileset dir = "${build.dir}">
<include name = "**/* class"/>
</fileset>
</delete>
</target>
</project>

* The clean target is used to prepare for the build process by
cleaning up any remnants of previous builds.
« In this case, it deletes all compiled files (.class)

« May also remove JAR files or other temporary artifacts that will be
regenerated by the build.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Building a Project

<project name = "Hello-World" basedir = "." default = "build">
<target name = "build" description = "Compile source tree java files">
<mkdir dir = "${build.dir}"/>

<javac destdir = "${build.dir}" source = "1.8" target = "1.8">
<src path = "${src.dir}"/>
<classpath refid = "master-classpath"/>
</javac>
</target>

</project>

* The build target will create the build directory, compile the
source code (using javac), and place the class files in the
build directory.

« Can specify which java version to target (1.8).

« Must reference the classpath to use during compilation.

CHALMERS | UNIVERSITY OF GOTHENBURG

Creating a JAR File

« The jar command is used to create a JAR (executable) from your
compiled classes.

<target name = "package">
<jar destfile = "lib/util.jar" basedir = "${build.dir}/classes”
includes = "app/util/**" excludes = "**/Test.class">
<manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>
</jar>
</target>

« destfile is the location to place the JAR file.
- basedir is the base directory of included files.
* includes defines the files to include in the JAR.
« excludes prevents certain files from being added.
 The manifest declares metadata about the JAR.
« Attribute Main-Class makes the JAR executable.

y CHALMERS | UNIVERSITY OF GOTHENBURG

Running Unit Tests
* JUnit tests are run using the junit command.

<target name = "test">
<junit haltonfailure = "true" haltonerror = "false"
printsummary = "true" timeout = "5000">
<test name = "com.utils.UtilsTest"/>
</junit>
</target>

* test entries list the test classes to execute.

* haltonfailure will stop test execution if any tests fail, haltonerror if
errors occur.

e printsummary displays test statistics (number of tests run, number of
failures/errors, time elapsed).

« timeout will stop a test and issue an error if the specified time limit is
exceeded.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices

* Automate everything you can!

* Ant can integrate with version control, run scripts, send
files, zip files, etc.

« Use it as a comprehensive project management tool.

* Require all team members to use Ant.

« Require an Ant build before checking changes into
version control.

* Provide a “clean” target.

 All build files need the ability to clean up before a fresh
build. Clean should only retain the files in VCS.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Best Practices: Follow Consistent Naming Conventions

« Call the build file build.xml, properties should be
stored in build.properties.
« And these should be in the root of the project.

 Prefix internal targets with a hyphen.

« “build” might be available for external use, subtarget
“-build.part1” might not be intended for use in isolation.

« By prefixing a hyphen, you give readers context.
« Hyphenated targets cannot be run from command line.

 Format and document the XML file.

* Try to make the file readable to the human eye.

#8) CHALMERS | (&% UNIVERSITY OF GOTHENBURG

Best Practices: Design for Maintenance
« Will your build file be readable in the future?

 Will the file execute on a clean machine?
 Document the build process.

Write a text file describing the build and deployment process.
List programs and libraries needed for the build.

* Avoid dependencies on programs/JAR files that are not
stored with the project.

Store external libraries with the project for easier builds.

« Do not distribute usernames/passwords in the build files.
These change + this is bad security.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Test automation can be used to lower the cost and
improve the quality of testing.

« Automation involves creating drivers, harnesses,
stubs, and oracles.

« Test cases are often written in unit testing

frameworks, as executable pieces of code.
« Assertions allow deep examination of program output for
failures.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Testing is not all that can be automated.
* Project compilation, installation, deployment, etc.

* Project build automation:

* Automating the entire compilation, testing, and
deployment process.

« Antis an XML-based language for automating the build
process.

s o 3

#6) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Next Time

* Exploratory Testing
« Human-driven exploration of system capabilities.

« Assignment 1 due February 16
- Before February 7, make sure you have one laptop per group
with an IDE installed with JUnit support.

« Make sure JUnit tests can be run

e [ntellid:
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

« Eclipse:
https://help.eclipse.orq/2019-12/index.ijsp?topic=%2Forg.eclipse.jdt.doc.u
ser%2F gettingStarted%2Fgs-junit.htm

https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

