
Lecture 5: Unit Testing and Test
Automation

Gregory Gay
DIT635 - February 5, 2020

2018-08-27 Chalmers University of Technology 2

Today’s Goals
• We now know what tests *are*.
• Soon, we’ll learn how to design tests.

• (exploration -> requirements - > code structure)
• Today - some of the technical detail.

• How to write unit tests in JUnit.
• Executing tests as part of a build script.

Executing Tests
• How do you run test cases on the program?

• You could run the code and check results by hand.
• Please don’t do this.

• Humans are slow, expensive, and error-prone.
• Exception - exploratory testing.

• Test design requires effort and creativity.
• Test execution should not.

3

Test Automation
• Test Automation is the development of software to

separate repetitive tasks from the creative aspects
of testing.

• Automation allows control over how and when tests
are executed.
• Control the environment and preconditions.
• Automatic comparison of predicted and actual output.
• Automatic hands-free re-execution of tests.

4

Testing Requires Writing Code
• Testing cannot wait for the system to be complete.

• The component to be tested must be isolated from the
rest of the system, instantiated, and driven using method
invocations.

• Untested dependencies must be stubbed out with reliable
substitutions.

• The deployment environment must be simulated by a
controllable harness.

5

Test Scaffolding
• Test scaffolding is a set of programs written to

support test automation.
• Not part of the product
• Often temporary

• Allows for:
• Testing before all components complete.
• Testing independent components.
• Control over testing environment.

6

Test Scaffolding
• A driver is a substitute for a main or calling

program.
• Test cases are drivers.

• A harness is a substitute for all or part of the
deployment environment.

• A stub (or mock object) is a substitute for system
functionality that has not been completed.

• Support for recording and managing test execution.

7

Test Scaffolding

● Initializes objects
● Initializes parameter variables
● Performs the test
● Performs any necessary

cleanup steps.

● Simulates the execution environment.
● Can control network conditions,

environmental factors,
operating systems.

● Templates that provide functionality
and allow testing in isolation

● Checks the correspondence between the produced and
expected output and renders a test verdict.

8

Writing an Executable Test Case
• Test Input

• Any required input data.
• Expected Output (Test Oracle)

• What should happen, i.e., values or exceptions.
• Initialization

• Any steps that must be taken before test execution.
• Test Steps

• Interactions with the system (such as method calls), and output
comparisons.

• Tear Down
• Any steps that must be taken after test execution to prepare for the

next test.
9

Writing a Unit Test
JUnit is a Java-based toolkit
for writing executable tests.
• Choose a target from the

code base.
• Write a “testing class”

containing a series of unit
tests centered around
testing that target.

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

10

Writing a Unit Test

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

import static

org.junit.jupiter.api.Assertions.assertEquals;

import org.junit.jupiter.api.Test;

public class CalculatorTest {

 @Test

 void testEvaluate_Valid_ShouldPass(){

 Calculator calculator = new Calculator();

 int sum = calculator.evaluate("1+2+3");

 assertEquals(6, sum);

calculator = null;

 }

}

Convention - name the test class
after the class it is testing or the
functionality being tested.

Each test is denoted with keyword
@test.

Initialization

Test Steps Input
Oracle

Tear Down

11

Test Fixtures - Shared Initialization
@BeforeEach annotation defines a common test
initialization method:
@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();

this.registration.setUser(“ggay”);

}

12

Test Fixtures - Teardown Method
@AfterEach annotation defines a common test tear
down method:
@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();

this.registration = null;

}

13

More Test Fixtures
• @BeforeAll defines

initialization to take
place before any
tests are run.

• @AfterAll defines
tear down after all
tests are done.

@BeforeAll

 public static void setUpClass() {

myManagedResource = new

ManagedResource();

 }

 @AfterAll

 public static void tearDownClass()

throws IOException {

 myManagedResource.close();

 myManagedResource = null;

 }

14

Test Skeleton
@Test annotation defines a single test:

@Test

public void test<Feature or Method>_<Context>() {

//Define Inputs

try{ //Try to get output.

}catch(Exception error){

fail("Why did it fail?");

}

//Compare expected and actual values through assertions or through if
statements/fails

}

15

Type of scenario, and expectation on outcome.
I.e., testEvaluate_NullInput()

Assertions
Assertions are a "language" of testing - constraints that
you place on the output.

• assertEquals, assertArrayEquals
• assertFalse, assertTrue
• assertNull, assertNotNull
• assertSame,assertNotSame

16

assertEquals
@Test

public void testAssertEquals() {

 assertEquals("failure - strings are not

equal", "text", "text");

}

@Test

public void testAssertArrayEquals() {

 byte[] expected = "trial".getBytes();

 byte[] actual = "trial".getBytes();

 assertArrayEquals("failure - byte arrays

not same", expected, actual);

}

● Compares two items for
equality.

● For user-defined classes,
relies on .equals method.
○ Compare field-by-field
○ assertEquals(studentA.getName(),

studentB.getName())
rather than
assertEquals(studentA, studentB)

● assertArrayEquals
compares arrays of items.

17

assertFalse, assertTrue
@Test

public void testAssertFalse() {

 assertFalse("failure - should be false",

(getGrade(studentA, “DIT635”).equals(“A”));

}

@Test

public void testAssertTrue() {

assertTrue("failure - should be true",

(getOwed(studentA) > 0));

}

● Take in a string and a
boolean expression.

● Evaluates the expression
and issues pass/fail based
on outcome.

● Used to check
conformance of solution to
expected properties.

18

assertSame, assertNotSame
@Test

public void testAssertNotSame() {

 assertNotSame("should not be same Object",

studentA, new Object());

}

@Test

public void testAssertSame() {

 Student studentB = studentA;

 assertSame("should be same", studentA,

studentB);

}

● Checks whether two
objects are clones.

● Are these variables aliases
for the same object?
○ assertEquals uses

.equals().
○ assertSame uses ==

19

assertNull, assertNotNull
@Test

public void testAssertNotNull() {

 assertNotNull("should not be null",

 new Object());

}

@Test

public void testAssertNull() {

 assertNull("should be null", null);

}

● Take in an object and
checks whether it is
null/not null.

● Can be used to help
diagnose and void null
pointer exceptions.

20

Grouping Assertions
@Test

void groupedAssertions() {

 Person person = Account.getHolder();

 assertAll("person",

 () -> assertEquals("John",

person.getFirstName()),

 () -> assertEquals("Doe",

person.getLastName()));

}

● Grouped assertions are
executed.
○ Failures are reported

together.
○ Preferred way to

compare fields of two
data structures.

21

assertThat
@Test

public void testAssertThat{

 assertThat("albumen", both(containsString("a")).and(containsString("b")));

 assertThat(Arrays.asList("one", "two", "three"), hasItems("one", "three"));

 assertThat(Arrays.asList(new String[] { "fun", "ban", "net" }),

 everyItem(containsString("n")));

 assertThat("good", allOf(equalTo("good"), startsWith("good")));

 assertThat("good", not(allOf(equalTo("bad"), equalTo("good"))));

 assertThat("good", anyOf(equalTo("bad"), equalTo("good")));

 assertThat(7, not(CombinableMatcher.<Integer>

 either(equalTo(3)).or(equalTo(4))));

}

both - two properties must be met.has items - a list contains an indicated subset of items,
but can also contain other items.

everyItem - all items in list must match a
property.allOf - all listed properties must be truenot(allOf(...)) - if all of these properties
are true, the test should fail.
anyOf - at least one of the listed
properties must be trueeither - pass if one of these properties is true.

22

Testing Exceptions
@Test

void exceptionTesting() {

 Throwable exception =

 assertThrows(

 IndexOutOfBoundsException.class,

 () -> { new ArrayList<Object>().get(0);}

);

 assertEquals("Index:0, Size:0",

 exception.getMessage());

}

23

● When testing error
handling, we expect
exceptions to be thrown.
○ assertThrows checks

whether the code block
throws the expected
exception.

○ assertEquals can be
used to check the
contents of the stack
trace.

Testing Performance
@Test

void timeoutExceeded() {

 assertTimeout(ofMillis(10),

 () -> { Order.process(); });

}

@Test

void timeoutNotExceededWithMethod() {

 String greeting =

 assertTimeout(ofMinutes(2),

 AssertionsDemo::greeting);

 assertEquals("Hello, World!", greeting);

}
24

● assertTimeout can be
used to impose a time
limit on an action.
○ Time limit stated using ofMilis(..),

ofSeconds(..), ofMinutes(..)
○ Result of action can be captured as

well, allowing checking of result
correctness.

Activity - Unit Testing
You are testing the following method:

public double max(double a, double b);

Devise three executable test cases for this method in
the JUnit notation. See the attached handout for a
refresher on the notation.

25

@Test

 public void aLarger() {

 double a = 16.0;

 double b = 10.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertTrue(“should be larger”, actual>b);

 assertEquals(expected, actual);

 }

@Test

 public void bLarger() {

 double a = 10.0;

 double b = 16.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertTrue(“b should be larger”, b>a);

 assertEquals(expected, actual);

 }

@Test

 public void bothEqual() {

 double a = 16.0;

 double b = 16.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertEquals(a,b);

 assertEquals(expected, actual);

 }

@Test

 public void bothNegative() {

 double a = -2.0;

 double b = -1.0;

 double expected = -1.0;

 double actual = max(a,b);

 assertTrue(“should be negative”,actual<0);

 assertEquals(expected, actual);

 }

26

Best Practices
• Use assertions instead of print statements

@Test

public void testStringUtil_Bad() {

 String result = stringUtil.concat("Hello ", "World");
 System.out.println("Result is "+result);
}

@Test
public void testStringUtil_Good() {
 String result = stringUtil.concat("Hello ", "World");
 assertEquals("Hello World", result);
}

• The first test will always pass (no assertions)
• Developer would need to manually verify the output.

27

Best Practices
• Even if code is non-deterministic, tests should give deterministic results.

public long calculateTime(){
 long time = 0;
 long before = System.currentTimeMillis();
 veryComplexFunction();
 long after = System.currentTimeMillis();
 time = after - before;
 return time;

}

• Each time this method is executed, the result will differ.
• Tests for this method should not specify the exact time returned, but

properties of a “good” execution.
• The time should be positive, not negative or 0.
• Couple place a range on the output.

28

Best Practices
• Test negative scenarios and boundary cases, in

addition to positive scenarios.
• Can the system handle invalid data?
• Method expects a string of length 8, with A-Z,a-z,0-9.

• Try non-alphanumeric characters. Try a blank value. Try strings
with length < 8, > 8

• Boundary cases test extreme values.
• If method expects numeric value 1 to 100, try 1 and 100.

• Also, 0, negative, 100+ (negative scenarios).

29

Best Practices
• Test only one code unit at a time.

• Capture each scenario in a separate test case.
• Method with two parameters: separate one null, other

null, both null, and “happy path” into different test cases.
• Helps in isolating and fixing faults.

• Don’t use unnecessary assertions.
• Unit tests are a specification on how behavior should

work, not a list of observations.
• Aim for each unit test method to perform exactly one

assertion - ensure all assertions are related in purpose.
30

Best Practices
• Make each test independent of all others.

• Use @BeforeEach and @AfterEach to set up state and clear state
before the next test case.

• Create unit tests to target exceptions.
• If an exception should be thrown based on certain input, make

sure the exception is thrown.

31

Best Practices
• Name test cases clearly and consistently.

• Name tests after what they do and test.
• Name should encode operation, scenario, and expectation:

• TestCreateEmployee_NullId_ShouldThrowException
• TestCreateEmployee_NegativeId_ShouldThrowException
• TestCreateEmployee_DuplicateId_ShouldThrowException
• TestCreateEmployee_ValidId_ShouldPass

32

Scaffolding
• Stubs and drivers are code written as replacements

other parts of the system.
• May be required if pieces of the system do not exist.

• Scaffolding allows control over test execution and
greater observability to judge test results.
• Simulate dependencies and test components in isolation.
• Ability to set up specialized testing scenarios.
• Ability to replace part of the program with a version more

suited to testing.

33

Replacing Interfaces
• Scaffolding can be complex - can replace any

portion of the system.
• If an interface does not allow control or

observability - write scaffolding to replace it.
• Allow inspection of previously-private variables.
• Replace a GUI with a machine-usable interface.
• May be useful after testing.

• Expose a command-line interface for scripting.

34

Generic vs Specific Scaffolding
• Simplest driver - run a single specific test case.
• More complex:

• Common scaffolding for a set of similar tests cases,
• Scaffolding that can run multiple test suites for the same

software (i.e., load a spreadsheet of inputs and run then).
• Scaffolding that can vary a number of parameters

(product family, OS, language).
• Balance of quality, scope, and cost.

35

Unit Testing - Object Mocking
Components may depend on
other, unfinished (or untested)
components. You can mock those
components.

• Mock objects have the same interface
as the real component, but are
hand-created to simulate the real
component.

• Can also be used to simulate
abnormal operation or rare events.

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()Mock_Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

get(){
return 98;

}

36

Mocking Example (Mockito)
• Declare a mock object:

LinkedList mList = mock(LinkedList.class);

• Specify method behavior:
when(mList.get(0)).thenReturn(“first”);

• Returns “first”: mList.get(0);
• Returns null: mList.get(99);

• Because behavior for “99” is not specified.
when(mList.get(anyInt()).thenReturn(“element”);

• mList.get(0), mList.get(99) both return
“element”, as all input are specified.

37

Mocking Within a Test
@test

public void temperatureTest(){

 Thermometer mockTherm = mock(Thermometer.class);

 when(mockTherm.get()).thenReturn(98);

 WeatherData wData = new WeatherData();

 wData.collect(mockTherm);

 assertEquals(98,wData.temperature);

}

38

39

Let’s take a break.

40

Build Systems

Build Systems
• Building software, running test cases, and

packaging and distributing the executable are very
common, effort-intensive tasks.

• Building and deploying the project should be as
easy as possible.

• Build systems ease this process by automating as
much of it as possible.
• Repetitive tasks can be automated and run at-will.

41

Build Systems
• Build systems allow control over code compilation,

test execution, executable packaging, and
deployment to production.

• Script defines actions that can be automatically
invoked at any time.

• Many frameworks for build scripting.
• Most popular for Java include Ant, Maven, Gradle.
• Gradle is very common for Android projects.

42

Build Lifecycle

• Validate the project is correct and all necessary information
is available

• Compile the source code of the project.
• Test the source code using a suitable unit testing framework.

• Run unit tests against classes and subsystem
integration tests against groups of classes.

• Take the compiled code and package it in its distributable
format, such as a JAR.

43

Validate Compile Test Package Verify Install Deploy

Build Lifecycle

• Verify - run system tests to ensure quality criteria
are met.
• System tests require a packaged executable.
• This is also when tests of non-functional criteria like

performance are executed.

• Install the package for use as a dependency in
other projects locally.

• Deploy the package to the installation environment.
44

Validate Compile Test Package Verify Install Deploy

Apache Ant
• Ant (Another Neat Tool) is a build system for Java.
• Build scripts define a set of targets that can be

executed on command.
• Targets can correspond to lifecycle phases or other

desired automated tasks.
• Targets can trigger other targets.
• Build scripts written in XML.

• Platform neutral, But can invoke platform-specific commands.
• Human and machine readable.
• Created automatically by many IDEs (Eclipse).

45

A Basic Build Script

• File typically named build.xml, and placed in the base
directory of the project.

• Build script requires project element and at least one target.
• Project defines a name and a default target.
• This target prints project information.

• Echo prints information to the terminal.
46

<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

Targets

• A target is a collection of tasks you want to run in a
single unit.
• Targets can depend on other targets.
• If you issue the deploy command, it will complete the

package target first, which will complete clean and
compile first.

• Dependencies are denoted using the depends attribute.
47

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Targets

• Target attributes:
• name defines the name of the target (required)
• depends lists dependencies of the target.
• description is used to describe the target.
• if and unless allow execution of the target to depend on

a conditional attribute.
• Execute the target if the attribute is true, or execute is unless the

attribute is true.
48

<target name = "deploy" depends = "package"> </target>
<target name = "package" depends = "clean,compile"> </target>
<target name = "clean" > </target>
<target name = "compile" > </target>

Executing targets

• In the command line, invoke:
• ant <target name>

• If no target is supplied, the default will be executed.
• In this case, ant and ant info will give the same result

because info is the default target.

49

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <target name = "info">
 <echo>Hello World - Welcome to Apache Ant!</echo>
 </target>
</project>

>> ant

Buildfile: build.xml

info: [echo] Hello World - Welcome to Apache

Ant!

BUILD SUCCESSFUL

Total time: 0 seconds

Properties
• XML does not natively allow variable declaration.

• Instead, Ant allows the creation of property elements,
which can be referred to by name.

<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <property name = "sitename" value = "http://cse.sc.edu"/>
 <target name = "info">
 <echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
 </target>
</project>

50

Properties
<?xml version = "1.0"?>

<project name = "Hello World Project" default = "info">
 <property name = "sitename" value = "http://cse.sc.edu"/>
 <target name = "info">
 <echo>Apache Ant version is ${ant.version} - You are at ${sitename} </echo>
 </target>
</project>

• Properties have a name and a value.
• Property value is referred to as ${property name}.
• Ant pre-defines ant.version, ant.file (location of the build

file), ant.project.name, ant.project.default-target, and
other properties.

51

Property Files
• A separate file can be used to define a set of static

properties.
• Allows reuse of a build file in different execution

environments (development, testing, production).
• Allows easy lookup of property values.

• Typically called build.properties and stored in the
same directory as the build script.
• Lists one property per line: <name> = <value>
• Comments can be added using # <comment>

52

Property Files
• build.xml
<?xml version = "1.0"?>
<project name = "Hello World Project" default = "info">
 <property file = "build.properties"/>
 <target name = "info">
 <echo>You are at ${sitename}, version ${buildversion}.</echo>
 </target>
</project>

• build.properties
The Site Name

sitename = http://cse.sc.edu

buildversion = 3.3.2

53

Conditions • Conditions are properties whose value is
determined by and and or expressions.
• And requires each property to be true.

• In this case, both foo.txt and bar.txt
must exist.

• (available is an Ant command that
checks for file existence)

• Or requires only one listed property to
be true.

• Calling target myTarget.check creates
a property (myTarget.run) that is true
if both files are present.

• When myTarget is called, it will run
only if myTarget.run is true.

54

<target name = "myTarget" depends =

"myTarget.check" if =
"myTarget.run"> </target>
<target name = "myTarget.check">
 <condition property =
"myTarget.run">
 <and>
 <available file =
"foo.txt"/>
 <available file =
"bar.txt"/>
 </and>
 </condition>
</target>

Ant Utilities
• Fileset generates a list of files matching set criteria for

inclusion or exclusion.
• ** means that the file can be in any subdirectory.
• * allows partial file name matches.

<fileset dir = "${src}" casesensitive = "yes">
 <include name = "**/*.java"/>
 <exclude name = "**/*Stub*"/>
</fileset>

55

Ant Utilities

• Path is used to represent a classpath.
• pathelement is used to add items or other paths to the path.

<path id = "build.classpath.jar">
 <pathelement path = "${env.J2EE_HOME}/j2ee.jar"/>
 <fileset dir = "lib"> <include name = "**/*.jar"/> </fileset>
</path>

56

Building a Project
<project name = "Hello-World" basedir = "." default = "build">
 <property name = "src.dir" value = "src"/>
 <property name = "build.dir" value = "target"/>
 <path id = "master-classpath">
 <fileset dir = "${src.dir}/lib"> <include name = "*.jar"/> </fileset>
 <pathelement path = "${build.dir}"/>
 </path>
</project>

• Properties src.dir and build.dir define where the source files
are stored and where the built classes are deployed.

• Path master-classpath includes all JAR files in the lib folder
and all files in the build.dir folder.

57

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 <target name = "clean" description = "Clean output directories">
 <delete>
 <fileset dir = "${build.dir}">
 <include name = "**/*.class"/>
 </fileset>
 </delete>
 </target>
</project>

• The clean target is used to prepare for the build process by
cleaning up any remnants of previous builds.

• In this case, it deletes all compiled files (.class)
• May also remove JAR files or other temporary artifacts that will be

regenerated by the build.
58

Building a Project
<project name = "Hello-World" basedir = "." default = "build">

 <target name = "build" description = "Compile source tree java files">
 <mkdir dir = "${build.dir}"/>
 <javac destdir = "${build.dir}" source = "1.8" target = "1.8">
 <src path = "${src.dir}"/>
 <classpath refid = "master-classpath"/>
 </javac>
 </target>

</project>

• The build target will create the build directory, compile the
source code (using javac), and place the class files in the
build directory.

• Can specify which java version to target (1.8).
• Must reference the classpath to use during compilation.

59

Creating a JAR File
• The jar command is used to create a JAR (executable) from your

compiled classes.
<target name = "package">
 <jar destfile = "lib/util.jar" basedir = "${build.dir}/classes"
 includes = "app/util/**" excludes = "**/Test.class">
 <manifest><attribute name = "Main-Class" value = "com.util.Util"/></manifest>
</jar>
</target>

• destfile is the location to place the JAR file.
• basedir is the base directory of included files.
• includes defines the files to include in the JAR.
• excludes prevents certain files from being added.
• The manifest declares metadata about the JAR.

• Attribute Main-Class makes the JAR executable.
60

Running Unit Tests
• JUnit tests are run using the junit command.
<target name = "test">

 <junit haltonfailure = "true" haltonerror = "false"
 printsummary = "true" timeout = "5000">
 <test name = "com.utils.UtilsTest"/>
 </junit>
</target>

• test entries list the test classes to execute.
• haltonfailure will stop test execution if any tests fail, haltonerror if

errors occur.
• printsummary displays test statistics (number of tests run, number of

failures/errors, time elapsed).
• timeout will stop a test and issue an error if the specified time limit is

exceeded.
61

Best Practices
• Automate everything you can!

• Ant can integrate with version control, run scripts, send
files, zip files, etc.

• Use it as a comprehensive project management tool.

• Require all team members to use Ant.
• Require an Ant build before checking changes into

version control.

• Provide a “clean” target.
• All build files need the ability to clean up before a fresh

build. Clean should only retain the files in VCS.
62

Best Practices: Follow Consistent Naming Conventions
• Call the build file build.xml, properties should be

stored in build.properties.
• And these should be in the root of the project.

• Prefix internal targets with a hyphen.
• “build” might be available for external use, subtarget

“-build.part1” might not be intended for use in isolation.
• By prefixing a hyphen, you give readers context.
• Hyphenated targets cannot be run from command line.

• Format and document the XML file.
• Try to make the file readable to the human eye.

63

Best Practices: Design for Maintenance
• Will your build file be readable in the future?
• Will the file execute on a clean machine?

• Document the build process.
• Write a text file describing the build and deployment process.
• List programs and libraries needed for the build.

• Avoid dependencies on programs/JAR files that are not
stored with the project.

• Store external libraries with the project for easier builds.
• Do not distribute usernames/passwords in the build files.

These change + this is bad security.
64

We Have Learned
• Test automation can be used to lower the cost and

improve the quality of testing.
• Automation involves creating drivers, harnesses,

stubs, and oracles.
• Test cases are often written in unit testing

frameworks, as executable pieces of code.
• Assertions allow deep examination of program output for

failures.

65

We Have Learned
• Testing is not all that can be automated.

• Project compilation, installation, deployment, etc.
• Project build automation:

• Automating the entire compilation, testing, and
deployment process.

• Ant is an XML-based language for automating the build
process.

66

67

Next Time
• Exploratory Testing

• Human-driven exploration of system capabilities.
• Assignment 1 due February 16
• Before February 7, make sure you have one laptop per group

with an IDE installed with JUnit support.
• Make sure JUnit tests can be run

• IntelliJ:
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

• Eclipse:
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.u
ser%2FgettingStarted%2Fqs-junit.htm

https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm

