@)
m ®)
z k=
wid
- "
S D
e o
z ©
2 c
> @]
Z I _
- c S
cC Q
§ = 3
() Re .. S
o N~ S
St Q >3
-7 S G_.r o
<: = 2.
5: e 9
Cw c (@)I{o)
Q O
—d O)a)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Where Do Tests Come From?

* Many are derived from requirement specifications.
* The specification defines “correct” behavior.

« The specification exists in some form before code is
written, and guides development.

» Test plans and cases can be developed and refined
as the code is built.

* Functional Testing: The process of deriving tests
from the requirement specifications.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Functional Testing

* Deriving tests from the requirement specifications.

* Typically the baseline technique for designing test cases.
Can begin as part of requirements specification, and
continue through each level of design and
Implementation.

« Basis of verification - builds evidence that the
implementation conforms to its specification.

 Effective at finding some classes of faults that elude

code-based techniques.
i.e., incorrect outcomes and missing functionality

J} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Partitioning

e Functional testing is based
on the idea of partitioning.
o You can't test individual

5 requirements in isolation.

] o Instead, we need to
partition the specification
and software into
features that can be
tested.

(&6) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Partitioning

e Not all inputs have the same
effect.

e Partition the outputs of a
feature into the possible
outcomes.

o ... and the inputs, by
what outcomes they
cause (or other potential

groupings).

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Creating Requirements-Based Tests

Write Testable
Specifications

Produce clear, detailed, and testable requirements.

\[Identify Independently] Figure out what functions can be tested in

Testable Features

(relative) isolation.

Identify Representative

|

What are the outcomes of the feature, and

Input Values which input classes will trigger them?
Generate Test Case] |dentify abstract
Specifications classes of test cases.

Instantiate concrete
input/output pairs.

Generate Test
Cases

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Specification Verifiability

“The system should be easy to use by experienced
engineers and should be organized in such a way
that user errors are minimized.”

* Problem is the use of vague terms such as
“errors shall be minimized.”
* The error rate must be quantified

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example Specifications

« After a high temperature is detected, an alarm must
be raised quickly.

* Novice users should be able to learn the interface
with little training.

How in the world do you make these specifications
verifiable?

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Test the Requirement

After a high temperature is detected, an alarm must be
raised quickly.
Test Case 1:
e Input:
 Atrtificially raise the temperature above the high temperature threshold.
* Procedure:
 Measure the time it takes for the alarm to come on.

« Expected Output:
 The alarm shall be on within 2 seconds.

{8%)) UNIVERSITY OF GOTHENBURG

Test the Requirement

Novice users should be able to learn the interface with little training.
Test Case 2:

* Input:
« |dentify 10 new users and put them through the training course
(maximum length of 6 hours)
* Procedure:
« Monitor the work of the users for 10 days after the training has been
completed
« Expected Output:
« The average error rate over the 10 days shall be less than 3 entry
errors per 8 hours of work.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

“Fixed” Specifications

« Original: After a high temperature is detected, an alarm must be
raised quickly.

 New: When the temperature rises over the threshold, the alarm
must activate within 2 seconds.

« Original: Novice users should be able to learn the interface with
little training.

 New: New users of the system shall make less than 2 entry
mistakes per 8 hours of operation after 6 hours of training.

|
< {
B\
/N
/ ” /A\

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Detailed is Not Always Testable

 Number of invalid attempts to enter the PIN before

a user Is suspended.
* This count is reset when a successful PIN entry is
completed for the user.
* The default is that the user will never be suspended.
« The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How Many Tests Do You Need?

Testing a single requirement specification does not
mean writing a single test.

* You normally have to write several tests to ensure

that the requirement holds.
« What are the different conditions that the requirement
must hold under?

« Maintain links from tests to the requirements they
cover.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Independently Testable Feature

* Requirements are difficult to test in isolation.
However, the system can usually be decomposed
into the functions it provides.

 An independently testable feature is a
well-defined function that can be tested in
(relative) isolation.

* Identified to “divide and conquer” the complexity of
functionality.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Units and Features

« Executable tests are typically written in terms of

“units” of code.

« Usually a class or method.
« Until we have a design, we do not have units.

* An independently testable feature is a capability of

the software.
« May not correspond to unit(s).
« Can be at the class, subsystem, or system level.

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Features and Parameters

Tests for features must be described in terms of
parameters and environmental factors that influence its

execution.

« What are the inputs to that feature?
» User registration on a website might take in:
e (firstName, lastName, dateOfBirth, eMail)
e Consider implicit environmental factors.

* Registration also requires a user database.
« Contents of that database influence execution.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Parameter Characteristics

The key to identifying tests is in understanding how the
parameters are used by the feature.

* Type information is helpful.
« firstName Is string, database contains UserRecords.

« ... but context is important.
 |f the database already contains an entry for that
combination of fields, registration should be rejected.
« dateOfBirth is a collection of three integers, but those
integers are not used for any arithmetic operations.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Parameter Context

* An input for a feature might be split into multiple

“variables” based on contextual use.

« The database may or may not contain a record for that

user.
* |n either case, issues may emerge based on the size of the
database.
« The program may also have issues if a database connection
cannot be established.

* This is three “parameters” for a feature.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examples

Class Registration System
What are some independently testable features?

* Add class

* Drop class

* Modify grading scale

« Change number of credits

« Graphical interface of registration page

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examples

Adding a class
What are the parameters?

Course number to add

Grading basis

Student record

What about a course database? Student record
database?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examples

e Student Record

* Context - how is it used?

« Have you already taken the course?
Are there holds on your record?
Do you meet the prerequisites?

Each of these can be varied when testing.

UNIVERSITY OF GOTHENBURG

Independently Testable Features

What are three independently testable features of a
spreadsheet? :

2B [@EaR $EXKED-¢ -0 @8 By AGEEQ O im [Jb 4,
B [aal Bl I BZU Bb% W W e O-2-A
AL [& & = [
B C D E F | 6| H 1T [3 [x [¢ [™M [NT o [P JQ[R[s[T~
B Grand Totals| P& L |%Return | Loot | materisl material | fem afy | tem TT | metalves | enmatres | ol res | robot res | talor res | Bps | gems |
o] S1os050| caast 1655266|16,043.48 646534 [55,941.00| 504447 | 120056 | 30202 [120635 000 | 702 |72 16000
start En
4 Date B8P P&L |%Return material BP QR - clicks | material | item gty | item TT | metal res | enmatres | oil res | robot res | tailor res | Bps | gems | BP QR
[31 | 09/04/11 0x0F362CECO1ESBCE273C0 (L)L) se2| 101.03%| s2867] 82025 0.5 15| 21867 5| 610.00] 04
| 32 | o0sr0r11 basic screws 233¢| sas0%| 2580) 4914 684 126 [42| 1688 892 686
| 33 | 10104/11 basic screws. 2027 60.20%| 78| 7605 688 195 [843 3396 1181 001 632
| 34 | 11/09/11 blau tex s42| 7o93%| 215 2701 1 73 0.37] 45| 1080] 10.42] 61
| 35 | 1111711 Simple springs. 2855 89.59%| 2¢558) 27413 813 250] 5388] 240 96.00] 95.70) 819
[36 | 111811 basic screws arn1| 7asaw| siig esas es2 17g) o sl mml 13a 695
| 37 | 11720111 Simple springs. ss37| 11315%| 47604 42072 819 332 12834 45| 178.00] 169.67| 0.03) 823
| 38 | 1220111 blaus texture. 1762 15283%) s097| 3335 64 7 0.09) 8s| 2040 30.13] 0.35] 121
| 39 | ot01/12 brukite 0,06 104.96%) 1.27] 121 467 121 0.01, 74 074 0.413] 0.39 418
01/13/12 Simple 1 springs. 1481 106.75%) 234.25) 21944 823 72| 156.03, 86| 34.40 43.82| 823 =
| 41 | 01113112 Electropositive Modulator 05| s7se%| 20063 33078 412 1235] 11834] 5720 1191 19.12] 3401 517
| 42 | 0113012 hardened screws <670 stmw| 20050 24720 185 300 4605 1155 w245 255 19.42 260
| 43 | 01113112 Simple 2 springs 504 104.85%) 10350 28 43| 269 67 505 1481) 16.98| 283
| 44| 0111212 Solar 8V Gel Batteries 348 98.07%) 17966 94 121 7339 69 4830 3226 2226 152
| 45 | 0111312 GeoTrek Buttstock 2978 123.55%| 12648 48 63l 4512 51 4080 6.08] 64.17] 0.09) 8s
| 46 | 01113112 Simple | Plastic Ruds. 3530 s10e%| 15110 18640 554 107] 68| 99| 4950 3360 554
| 47 | o1man2 apist) tess| o723 sess7| e12s3 1 2| 3s0s7 1| 205.00) 10
| 48 | omnanzurizsw) 126 10034%| 379.16| 377.88 42 1| 294.06] 1| ssagf 42
| 49 | 012312 apist) 727 ore1w| s1s7E| aseas 1 2| 21378 1] 205.00] 1.0
| 50 | o1725112 basic screws 2542 59.01%| 3659 6201 695 159| [} 650] 26,00 10.58] 001 697
| 51 | 01/31/12 Simple 1 springs ss94| 7763%| 1s410] 25004 823 183 9065 158 6320 4025| 824
| 52 | 01/31/12 Simple 2 springs 7288 s279%| 38532 42920 283 79| 2889 so| 442 171 12.48| 304
| 53 | o13112Psaqt) 4069| ose0%| ssese| o2547 86 4 e09ss| 1| 22210 0.06| 52717 86
| 54 | o2n12n12psa) 132 10046%| 28812 28680 86 1 504 1| 22210 15.92| 860
| 55 | 02120112 pioneer face guard 26311 e83e%| e8| 83148 23 2028] 1204 12| 22400 16718 16168 257 4160
| 56 | 0212312psart) 397 10146% 27617] 27220 86 1 334 1| 22210 2067] 860
|57 | 031112 basic screws 8960 e3esw| 15688 24648 697 632 o 1521 e0se 9600 000 000 0.0¢] 7160
| 58 | oananzpsal) 41| oo7ew%| 7e38e 77325 s 2| sare7 1| 22210 0.03] 13,84 890
| 50 | 0324112 Simple 1 springs 202¢| 9233%| 35210(38134 824 387 4438 475 190.00] 11771 001 8330
60 | 032412 Simple 2 springs. s271| 7374%| 23229] 31500 304 12| 90.38| 138] 10350/ 19.17] 18.82| 3220
04i04/12 PSa(l) 745 sssiw| ened 6233 89 3| 36978 122210 854 2042 910 -
<[« [»)(1) fap jobs {CLD {bought {sales {J hunting /J mining /] crafting /L hunting /L mining’} L crafting {Full P&L { deposits / other costs zma;anzma « m] »
Sheet10/19 Default st | | Sum=04/04/12 |©——o—— @ [100%

& J:’g; CHALMERS | (& UNIVERSITY OF GOTHENBURG

Identifying Representative Values

* We know the features.
We know their
parameters.

 What input values
should we pick?

e What about
exhaustively trying
all inputs?

;é CHALMERS | @ UNIVERSITY OF GOTHENBURG

Exhaustive Testin

Take the arithmetic
function for the calculator:

add (1nt a, 1int b)

 How long would it take
to exhaustively test this
function?

{#%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Not all Inputs are Created Equal

« We can’t exhaustively test any
real program.

e We don’t need to!

« Some inputs are better than "
others at revealing faults, but
we can’'t know which in
advance. A\

« Tests with different input than
others are better than tests
with similar input.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Random Testing

* Pick inputs uniformly from the
distribution of all inputs.

* All inputs considered equal.

« Keep trying until out of time.

* No designer bias.

 Removes manual tedium.

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Why Not Random?

I'M THINKING OF A NUMBER

BETWEEN ONE AND
SEVEN HUNDRED BILLION.
TRY TO GUESS \T.

SI% MILLION
AND FOUR.

NOPE.
GUESS
AGAIN.

{§6) CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG

QL
‘,{w‘ UNIVE

e

Input Partitioning
Faults are sparse in the
space of all inputs, but
dense in some parts of the

space Where they appear.

/ /

By systematically trying input
from each partition, we will
hit the dense fault space.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Equivalence Class

 We want to divide the input domain into

equivalence classes.

* |nputs from a group can be treated as the same thing
(trigger same outcome, result in the same behavior, etc.).

* |f one test reveals a fault, others in this class (probably)
will too. In one test does not reveal a fault, the other ones
(probably) will not either.

» Perfect partitioning is difficult, so grouping based on
Intuition, experience, and common sense.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example

substr (string str, 1nt index)

What are some possible partitions?

index <0
index =0
index >0
str with length < index
str with length = index
str with length > index

[]

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing Input Partitions

* LOO
* LOO
* LOO
* LOO

* LOO
* LOO

K for equivalent output events.

K for ranges of numbers or values.

K for membership in a logical group.

K for time-dependent equivalence classes.

K for equivalent operating environments.

K at the data structures involved.

 Remember invalid inputs and boundary conditions.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Look for Equivalent Outcomes

* It is often easier to find good tests by looking at the

outputs and working backwards.
* Look at the outcomes of a feature and group input by the
outcomes they trigger.
« Example: getEmployeeStatus(employee ID)
 Manager, Developer, Marketer, Lawyer

 Employee Does Not Exist
« Malformed Employee ID

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Look for Ranges of Values

 |If an input is intended to be a 5-digit integer
between 10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

« Other options: < 0, max int, real-valued numbers
* You may want to consider non-numeric values as a

special partition.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Look for Membership in a Group

Consider the following inputs to a program:

 The name of a valid Java data type.
« Afloor layout
* A country name.

 All can be partitioned into groups.

« Numeric vs Other data types, Apartment vs Business,
Europe vs Asia, etc.

 All groups can be subdivided further.
* Look for context that an input is used in.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Timing Partitions

The timing and duration of an input may be as
important as the value of the input.

* Very hard and very crucial to get right.

« Trigger an electrical pulse 5ms before a deadline, 1ms before
the deadline, exactly at the deadline, and 1ms after the
deadline.

« Push the “Esc” key before, during, and after the program is
writing to (or reading from) a disc.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Equivalent Operating Environments

* Environment may affect behavior of the program.

* Environmental factors can be partitioned.
 Memory may affect the program.
* Processor speed and architecture.
 Try with different machine specs.

* Client-Server Environment
* No clients, some clients, many clients
* Network latency
« Communication protocols (SSH, FTP, Telnet)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Data Structures

Certain data structures are prone to certain types of
errors. Use those to suggest equivalence classes.

For sequences, arrays, or lists:

« Sequences that have only a single value.
 Different sequences of different sizes.
* Derive tests so the first, middle, and last elements

of the sequence are accessed.

/
< {
B\
/N
7 1

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Do Not Forget Invalid Inputs!

 Likely to cause problems. Do not forget to

iIncorporate them as input partitions.
« Exception handling is a well-known problem area.
« People tend to think about what the program should do,
not what it should protect itself against.

 Take these into account with all of the other
selection criteria already discussed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Input Partition Example

What are the input partitions for:

max (1nt a, 1nt b) returns (1nt c)

We could consider a or b in isolation:

a < 0, a=20, a>2~o

We should also consider the combinations of a and b
that influence the outcome of c:

a > b, a < b, a=>b

{81)) UNIVERSITY OF GOTHENBURG

Creating Requirements-Based Tests

For each independently testable
feature, we want to:

[Identify Representative] 1. ldentify the representative value
Values partitions for each input or
= — output.
enerate i1est LCase e
Specifications] 2. Use the partitions to form

abstract test specifications for

Generate Test] the combination of inputs.

3. Then, create concrete test cases
by assigning concrete values
from the set of input partitions
chosen for each possible test
specification.

Cases

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Equivalence Partitioning

Feature insert (int N, list A).

Partition inputs into equivalence classes.

1. int N is a 5-digit integer between 10000 and 99999.
Possible partitions:

<10000, 10000-99999, >100000
2. list Ais alist of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,

List of Length > 10

CHALMERS | UNIVERSITY OF GOTHENBURG

From Partition to Test Case

Choose concrete values for each combination of input partitions: insert (int

N, list A)

iat N Test Specifications: .

< 10000 insert(< 10000, Empty List)

10000 - 99999 insert (10000 - 99999, list[1])

> 99999 insert(> 99999, list[2-10])

list A etc

iy 1L Test Cases:

List[1] insert (5000, {})

List[2-10] insert (96521, {11123})

List[>10] insert (150000, {11123, 98765})
etc

CHALMERS NIVERSITY OF GOTHENBURG

Generate Test Cases

|

Generate Test Case
Specifications

Generate Test
Cases

|

substr(string str, int index)

Specification:

str: length >=2, contains
special characters
index: value >0

Test Case:
str = “ABCCN\n\t7”

index=5

(&%) UNIVERSITY OF GOTHENBURG

Boundary Values

Basic ldea:

* Errors tend to occur at
the boundary of a
partition.

« Remember to select
inputs from those
boundaries.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing Test Case Values

Choose test case values at the boundary (and typical)
values for each partition.

« If an input is intended to be a 5-digit integer between
10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

0 5000 9999 100000 150000 max int

10000 | | 50000 99999

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Activity - Functional Testing

You are asked to develop a simple C++ container class SetOfE
containing elements of type E with the following methods:

® vold 1nsert(E e)

® Rool find(E e)

@ vold delete(E e)

Using domain partitioning, develop functional test cases for the
methods. You can define your test cases as input/output pairs.

For example, to test insert (E e), one testcase could be:
Input: Empty Container/any e Expected output: e in Container.

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Activity Solution

Insert Empty/ any e e in container
E with one element / any e e in container
E with multiple elements / any e | e in container Delete | E containing e/ e no longer in
Very large E/ any e e in container 1!
E containing e/ e Error or no change E not containing e/ e Z(r)rg:),ange (or
Any E/ malformed & Error Any E / malformed e error
Exists E containing e/ e True
E not containing e/ ¢ Folse Very large E containing e/ e ﬁs?o longer in
Very large E containing e/ e True
Empty /e no change
E with only element e/ e True
Any E / malformed e Error
Empty /e False

CHALMERS NIVERSITY OF GOTHENBURG

Building a Test Suite

Smarter process than random
testing, but still comes down to
brute force:

e May still be an infeasibly high

[Identify Representative]

Values
number of test specifications.
\[Ge;e:;:;::t?;.?sase] e Each specification can be
£ transformed into MANY
Generate Test] concrete test cases. How
cases many should be tried?

How do we arrive at an effective,
reasonably-sized test suite?

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Category-Partition Method

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Category-Partition Method

A method of generating test specifications from
requirement specifications.

* Adds a small number of additional steps on the
process discussed today.

» Requires identifying categories, choices, and
constraints.

* Once identified, these can be used to automatically
generate a list of test specifications to cover.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Identify Independently Testable Features
and Parameter Characteristics

 |dentify features and their parameters.

* |dentify characteristics of each parameter.

 \What are the controllable attributes?

« What are their possible values?
May be defined partially by other parameters and their
characteristics.
May not correspond to variables in the code.

« Parameter characteristics are called categories.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example: Computer Configurations

* Your company sells custom computers.

« A configuration is a set of options for a model.
« Some combinations are invalid (i.e., VGA monitor with
HDMI video output).
« Testing feature:
e checkConfiguration (model, components)
 What are the parameters?
* Next - what are the choices to be made for each
parameter?

{8%)) UNIVERSITY OF GOTHENBURG

Parameter Characteristics

* Turn to the requirements specifications.

 Model: A model identifies a specific product and determines a set of
constraints on available components. Models are identified by a model
number. Models are characterized by logical slots on a bug. Slots may be
required (must be filled) or optional (may be left empty).

« Set of Components: A set of <slot, component> pairs, which must
correspond to the required and optional slots associated with the model. A
component is a choice that can be varied within a model. Available
components and a default for each slot is determined by the model. The
special value “empty” is allowed and may be the default for optional slots.
In addition to being compatible or incompatible with a model, components
may be compatible or incompatible with each other.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Categories

 Model

 Model number

* Number of required slots (must have a selection)

* Number of optional slots (may or may not have a selection)
e Components

« Selected component valid for model

« Number of required/optional slots with non-empty selections

» Selected components for required/optional slots OK/not OK
 Product Database

 Number of models in database

« Number of components in database

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Identify Representative Values

* For each category, many values that can be
selected for concrete test cases.
 We need to identify classes of values, called

choices, for each category.
» Atest specification is a combination of choices for all
categories.

 Consider all outcomes of a feature.
« Consider boundary values.

CHALMERS

UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

Choices for Each Category

Model Product Database

* Model number * Number of models in
 malformed database
* notin database « 0
« valid e 1

* Number of required slots * many
- 0 * Number of components
e 1 in database
* many « 0

* Number of optional slots e 1
« 0 * many
e 1
* many

Components

Correspondence of selection with model
slots

o omitted slots

o extraslots

o mismatched slots

o complete correspondence
Number of required (or optional)
components with non-empty selections

o 0

o < number required (or optional)

o = number required (or optional)
Selected components for required (or
optional) slots

o some default

o allvalid

o >=1incompatible with slot

o >=1incompatible with another

component
o >=1notin database

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Generate Test Case Specifications

* Test specifications are formed by combining
choices for all categories.

* Number of possible combinations may be
impractically large, so:
* Eliminate impossible pairings.
 |dentify constraints to remove unnecessary options.

 From the remainder, choose a subset of
specifications to turn into concrete tests.

{8%)) UNIVERSITY OF GOTHENBURG

S
N5

Choices for Each Category

Components
‘% e Seven categories with three choices. "7
ma ® Two categories with 6 choices.
. @ One category with 4 choices. e
\umber¢ o Results in 37 x 6°x 4 = 314928 test 7
1 specifications (or optional)
* ma : - (or optional)
number« ® - However... not all combinations o
i correspond to reasonable
ma specifications. o
o >=1incompatible with another

component
o >=1notin database

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Identify Constraints Among Choices

Three types of constraint:
e |F

 This partition only needs to be considered if another
property is true.

« ERROR

« This partition should cause a problem no matter what
value the other input variables have.

« SINGLE

* Only a single test with this partition is needed.
T

CHALMERS | UNIVERSITY OF GOTHENBURG

Applying Constraints

substr (string str, 1nt index)

Str length Input index

length O [PROPERTY zeroLen | value <O [ERROR |
length 1 value = 0

length >= 2 value = 1

Str contents value > 1

contains special characters (fifizerolen) value = MAXINT ([SINGLE

contains lower case only [iflzeroLen™)

contains mixed case _if IzeroLen |

emﬁti i if zeroLen I

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Applying Constraints

Components

Model Product Database

* Model number * Number of models in
 |malformed [error] | database
* not in database [error] * 0 [error]
« valid * 1 [single]

* Number of required slots * many
* 0 [single] * Number of components
* | 1 [property RS]|[single] in database
* [many [property RS] * 0 [error]

L[‘propel"ty_RSIVI?-‘NY| | * Tsingle] |

* Number of optional slots * many

* 0 [single]

* 1 [single] [property OS]
°* many [property OS]
[property OSMANY]

Correspondence of selection with model slots
o omitted slots [error]
o extra slots [error]
o mismatched slots [error]
o complete correspondence
Number of required (or optional) components with
non-empty selections
o| 0 [error] [if RS]
o | <number required (or optional) [error] [if
RS] / [if OS]
o = number required (or optional) [if RSMANY]
| [if OSMANY]
Selected components for required (or optional) slots
o some default [single]
o allvalid
o >=1 incompatible with slot
o >=1 incompatible with another component
o >=1notin database [error]

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Find Command

Bash command: find
find <pattern> <file>

* Finds instances of a pattern in a file
e find john myFile
« Finds all instances of john in the file
e find “john smith” myFile
* Finds all instances of john smith in the file
e find ““john” smith” myFile
« Finds all instances of john” smith in the file

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Find Command

« Parameters: pattern, file

* What can we vary for each?

« Our categories.

« What can we control about the pattern? Or the file?
* What choices can we make for each category?

« Our categories

* File name:
Name of an existing file provided
File does not exist

UNIVERSITY OF GOTHENBURG

Example - Find Command

. Pattern size: 1944 tests if we consider all combinations.
* Empty e Embedded quotes:
° Single character o no quotes
* many character o one quote
 longer than any line in the file o several quotes
« Quoting: e File name:

. Existing file name
: tt ted © g
patiern is quote o no file with this name

* not quoated e Number of occurrence of pattern in file:
* improperly quoated o None

- Embedded spaces: o exactly one
o more than one

No spaces e Pattern occurrences on target line:
* One space o One

» Several spaces o more than one

} CHALMERS |

UNIVERSITY OF GOTHENBURG

IF Constraints

« Pattern size:
« Empty
« single character [not empty]
* many character [not empty]

678 Tests

« longer than any line in the file [Not empty] o

* Quoting:

« pattern is quoted [quoted][if not empty]

« notquoted [if not empty]

- improperly quoted [if not empty]

« Embedded spaces:
* No spaces
 One space

and quoted]

[if not empty and quoted]
« Several spaces [if not empty

Embedded quotes:
© no quotes
o one quote [if not empty]
o several quotes [if not empty and
File name: quoted]
o Existing file name
o no file with this name
Number of occurrence of pattern in file:
o None [if not empty]
o exactlyone [match] [if not empty]
o more than one [match] [if not empty]
Pattern occurrences on target line:
o One [if match]

o more than one [if match]

UNIVERSITY OF GOTHENBURG

ERROR and SINGLE Constraints

Pattern size:

Empty

single character

many character

longer than any line in the file [error]

Quoting:

pattern is quoted
not quoted
improperly quoted [error]

Embedded spaces:
No spaces
One space
Several spaces

Embedded quotes:
O no quotes
o one quote
o several quotes
File name:
o Existing file name
o no file with this name [error]
Number of occurrence of pattern in file:
o None [single]
o exactly one
o more than one
Pattern occurrences on target line:
o One]
o more than one [single]

40 Tests!

[single]

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

We Have Learned

* Requirements-based tests are derived by

+ identifying independently testable features
 partitioning their input/output to identify equivalence
partitions
« combining inputs into test specifications
and removing impossible combinations
* then choosing concrete test values for each specification

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Key Points
* The requirement specifications define the correct
behavior of the system.

« Therefore, the first step in testing should be to derive
tests from the specifications.

* If the specification cannot be tested, you most likely
have a bad requirement.

« Rewrite it so it is testable.
 Remove the requirement if it can’t be rewritten.

» Tests must be written in terms of independently
testable features.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Key Points

* Not all inputs will have the same outcome, so the
iInputs should be partitioned and test cases should
be derived that try values from each partition.

 Input partitions can be used to form abstract fest
specifications that can be turned into 1+ concrete
test cases.

* |IF/ERROR/SINGLE constraints can remove
unnecessary combinations of input.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

« Structural Testing
« Optional Reading: Pezze and Young, Chapters 5.3 and
12
 Homework
« Assignment 1 Due Sunday, February 16
* Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

