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Where Do Tests Come From?

* Many are derived from requirement specifications.
* The specification defines “correct” behavior.

« The specification exists in some form before code is
written, and guides development.

» Test plans and cases can be developed and refined
as the code is built.

* Functional Testing: The process of deriving tests
from the requirement specifications.
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Functional Testing

* Deriving tests from the requirement specifications.

* Typically the baseline technique for designing test cases.
Can begin as part of requirements specification, and
continue through each level of design and
Implementation.

« Basis of verification - builds evidence that the
implementation conforms to its specification.

 Effective at finding some classes of faults that elude

code-based techniques.
i.e., incorrect outcomes and missing functionality
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Partitioning

e Functional testing is based
on the idea of partitioning.
o You can't test individual

5 requirements in isolation.

] o Instead, we need to
partition the specification
and software into
features that can be
tested.
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Partitioning

e Not all inputs have the same
effect.

e Partition the outputs of a
feature into the possible
outcomes.

o ... and the inputs, by
what outcomes they
cause (or other potential

groupings).
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Creating Requirements-Based Tests

Write Testable
Specifications

Produce clear, detailed, and testable requirements.

\[ Identify Independently ] Figure out what functions can be tested in

Testable Features

(relative) isolation.

Identify Representative

|

What are the outcomes of the feature, and

Input Values which input classes will trigger them?
Generate Test Case ] |dentify abstract
Specifications classes of test cases.

Instantiate concrete
input/output pairs.

Generate Test
Cases
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Specification Verifiability

“The system should be easy to use by experienced
engineers and should be organized in such a way
that user errors are minimized.”

* Problem is the use of vague terms such as
“errors shall be minimized.”
* The error rate must be quantified
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Example Specifications

« After a high temperature is detected, an alarm must
be raised quickly.

* Novice users should be able to learn the interface
with little training.

How in the world do you make these specifications
verifiable?
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Test the Requirement

After a high temperature is detected, an alarm must be
raised quickly.
Test Case 1:
e Input:
 Atrtificially raise the temperature above the high temperature threshold.
* Procedure:
 Measure the time it takes for the alarm to come on.

« Expected Output:
 The alarm shall be on within 2 seconds.
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Test the Requirement

Novice users should be able to learn the interface with little training.
Test Case 2:

* Input:
« |dentify 10 new users and put them through the training course
(maximum length of 6 hours)
* Procedure:
« Monitor the work of the users for 10 days after the training has been
completed
« Expected Output:
« The average error rate over the 10 days shall be less than 3 entry
errors per 8 hours of work.
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“Fixed” Specifications

« Original: After a high temperature is detected, an alarm must be
raised quickly.

 New: When the temperature rises over the threshold, the alarm
must activate within 2 seconds.

« Original: Novice users should be able to learn the interface with
little training.

 New: New users of the system shall make less than 2 entry
mistakes per 8 hours of operation after 6 hours of training.
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Detailed is Not Always Testable

 Number of invalid attempts to enter the PIN before

a user Is suspended.
* This count is reset when a successful PIN entry is
completed for the user.
* The default is that the user will never be suspended.
« The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)
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How Many Tests Do You Need?

Testing a single requirement specification does not
mean writing a single test.

* You normally have to write several tests to ensure

that the requirement holds.
« What are the different conditions that the requirement
must hold under?

« Maintain links from tests to the requirements they
cover.
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Independently Testable Feature

* Requirements are difficult to test in isolation.
However, the system can usually be decomposed
into the functions it provides.

 An independently testable feature is a
well-defined function that can be tested in
(relative) isolation.

* Identified to “divide and conquer” the complexity of
functionality.
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Units and Features

« Executable tests are typically written in terms of

“units” of code.

« Usually a class or method.
« Until we have a design, we do not have units.

* An independently testable feature is a capability of

the software.
« May not correspond to unit(s).
« Can be at the class, subsystem, or system level.
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Features and Parameters

Tests for features must be described in terms of
parameters and environmental factors that influence its

execution.

« What are the inputs to that feature?
» User registration on a website might take in:
e (firstName, lastName, dateOfBirth, eMail)
e Consider implicit environmental factors.

* Registration also requires a user database.
« Contents of that database influence execution.
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Parameter Characteristics

The key to identifying tests is in understanding how the
parameters are used by the feature.

* Type information is helpful.
« firstName Is string, database contains UserRecords.

« ... but context is important.
 |f the database already contains an entry for that
combination of fields, registration should be rejected.
« dateOfBirth is a collection of three integers, but those
integers are not used for any arithmetic operations.
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Parameter Context

* An input for a feature might be split into multiple

“variables” based on contextual use.

« The database may or may not contain a record for that

user.
* |n either case, issues may emerge based on the size of the
database.
« The program may also have issues if a database connection
cannot be established.

* This is three “parameters” for a feature.
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Examples

Class Registration System
What are some independently testable features?

* Add class

* Drop class

* Modify grading scale

« Change number of credits

« Graphical interface of registration page
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Examples

Adding a class
What are the parameters?

Course number to add

Grading basis

Student record

What about a course database? Student record
database?
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Examples

e Student Record

* Context - how is it used?

« Have you already taken the course?
Are there holds on your record?
Do you meet the prerequisites?

Each of these can be varied when testing.
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Independently Testable Features

What are three independently testable features of a
spreadsheet? :
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Identifying Representative Values

* We know the features.
We know their
parameters.

 What input values
should we pick?

e What about
exhaustively trying
all inputs?
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Exhaustive Testin

Take the arithmetic
function for the calculator:

add (1nt a, 1int b)

 How long would it take
to exhaustively test this
function?
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Not all Inputs are Created Equal

« We can’t exhaustively test any
real program.

e We don’t need to!

« Some inputs are better than "
others at revealing faults, but
we can’'t know which in
advance. A\

« Tests with different input than
others are better than tests
with similar input.
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Random Testing

* Pick inputs uniformly from the
distribution of all inputs.

* All inputs considered equal.

« Keep trying until out of time.

* No designer bias.

 Removes manual tedium.
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Why Not Random?

I'M THINKING OF A NUMBER

BETWEEN ONE AND
SEVEN HUNDRED BILLION.
TRY TO GUESS \T.

SI% MILLION
AND FOUR.

NOPE.
GUESS
AGAIN.
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Input Partitioning
Faults are sparse in the
space of all inputs, but
dense in some parts of the

space Where they appear.

/ /

By systematically trying input
from each partition, we will
hit the dense fault space.
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Equivalence Class

 We want to divide the input domain into

equivalence classes.

* |nputs from a group can be treated as the same thing
(trigger same outcome, result in the same behavior, etc.).

* |f one test reveals a fault, others in this class (probably)
will too. In one test does not reveal a fault, the other ones
(probably) will not either.

» Perfect partitioning is difficult, so grouping based on
Intuition, experience, and common sense.
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Example

substr (string str, 1nt index)

What are some possible partitions?

index <0
index =0
index >0
str with length < index
str with length = index
str with length > index

[ ]
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Choosing Input Partitions

* LOO
* LOO
* LOO
* LOO

* LOO
* LOO

K for equivalent output events.

K for ranges of numbers or values.

K for membership in a logical group.

K for time-dependent equivalence classes.

K for equivalent operating environments.

K at the data structures involved.

 Remember invalid inputs and boundary conditions.
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Look for Equivalent Outcomes

* It is often easier to find good tests by looking at the

outputs and working backwards.
* Look at the outcomes of a feature and group input by the
outcomes they trigger.
« Example: getEmployeeStatus(employee ID)
 Manager, Developer, Marketer, Lawyer

 Employee Does Not Exist
« Malformed Employee ID
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Look for Ranges of Values

 |If an input is intended to be a 5-digit integer
between 10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

« Other options: < 0, max int, real-valued numbers
* You may want to consider non-numeric values as a

special partition.
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Look for Membership in a Group

Consider the following inputs to a program:

 The name of a valid Java data type.
« Afloor layout
* A country name.

 All can be partitioned into groups.

« Numeric vs Other data types, Apartment vs Business,
Europe vs Asia, etc.

 All groups can be subdivided further.
* Look for context that an input is used in.
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Timing Partitions

The timing and duration of an input may be as
important as the value of the input.

* Very hard and very crucial to get right.

« Trigger an electrical pulse 5ms before a deadline, 1ms before
the deadline, exactly at the deadline, and 1ms after the
deadline.

« Push the “Esc” key before, during, and after the program is
writing to (or reading from) a disc.
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Equivalent Operating Environments

* Environment may affect behavior of the program.

* Environmental factors can be partitioned.
 Memory may affect the program.
* Processor speed and architecture.
 Try with different machine specs.

* Client-Server Environment
* No clients, some clients, many clients
* Network latency
« Communication protocols (SSH, FTP, Telnet)
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Data Structures

Certain data structures are prone to certain types of
errors. Use those to suggest equivalence classes.

For sequences, arrays, or lists:

« Sequences that have only a single value.
 Different sequences of different sizes.
* Derive tests so the first, middle, and last elements

of the sequence are accessed.
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Do Not Forget Invalid Inputs!

 Likely to cause problems. Do not forget to

iIncorporate them as input partitions.
« Exception handling is a well-known problem area.
« People tend to think about what the program should do,
not what it should protect itself against.

 Take these into account with all of the other
selection criteria already discussed.
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Input Partition Example

What are the input partitions for:

max (1nt a, 1nt b) returns (1nt c)

We could consider a or b in isolation:

a < 0, a=20, a>2~o

We should also consider the combinations of a and b
that influence the outcome of c:

a > b, a < b, a=>b
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Creating Requirements-Based Tests

For each independently testable
feature, we want to:

[ Identify Representative ] 1. ldentify the representative value
Values partitions for each input or
= — output.
enerate i1est LCase e
Specifications ] 2. Use the partitions to form

abstract test specifications for

Generate Test ] the combination of inputs.

3. Then, create concrete test cases
by assigning concrete values
from the set of input partitions
chosen for each possible test
specification.

Cases
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Equivalence Partitioning

Feature insert (int N, list A).

Partition inputs into equivalence classes.

1. int N is a 5-digit integer between 10000 and 99999.
Possible partitions:

<10000, 10000-99999, >100000
2. list Ais alist of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,

List of Length > 10
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From Partition to Test Case

Choose concrete values for each combination of input partitions: insert (int

N, list A)

iat N Test Specifications: .

< 10000 insert(< 10000, Empty List)

10000 - 99999 insert (10000 - 99999, list[1])

> 99999 insert(> 99999, list[2-10])

list A etc

iy 1L Test Cases:

List[1] insert (5000, {})

List[2-10] insert (96521, {11123})

List[>10] insert (150000, {11123, 98765})
etc
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Generate Test Cases

|

Generate Test Case
Specifications

Generate Test
Cases

|

substr(string str, int index)

Specification:

str: length >=2, contains
special characters
index: value >0

Test Case:
str = “ABCCN\n\t7”

index=5
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Boundary Values

Basic ldea:

* Errors tend to occur at
the boundary of a
partition.

« Remember to select
inputs from those
boundaries.
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Choosing Test Case Values

Choose test case values at the boundary (and typical)
values for each partition.

« If an input is intended to be a 5-digit integer between
10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

0 5000 9999 100000 150000 max int

10000 | | 50000 99999
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Let’s take a break.
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Activity - Functional Testing

You are asked to develop a simple C++ container class SetOfE
containing elements of type E with the following methods:

® vold 1nsert(E e)

® Rool find(E e)

@ vold delete(E e)

Using domain partitioning, develop functional test cases for the
methods. You can define your test cases as input/output pairs.

For example, to test insert (E e), one testcase could be:
Input: Empty Container/any e Expected output: e in Container.
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Activity Solution

Insert Empty/ any e e in container
E with one element / any e e in container
E with multiple elements / any e | e in container Delete | E containing e/ e no longer in
Very large E/ any e e in container 1!
E containing e/ e Error or no change E not containing e/ e Z(r)rg:),ange (or
Any E/ malformed & Error Any E / malformed e error
Exists E containing e/ e True
E not containing e/ ¢ Folse Very large E containing e/ e ﬁs?o longer in
Very large E containing e/ e True
Empty /e no change
E with only element e/ e True
Any E / malformed e Error
Empty /e False
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Building a Test Suite

Smarter process than random
testing, but still comes down to
brute force:

e May still be an infeasibly high

[ Identify Representative ]

Values
number of test specifications.
\[ Ge;e:;:;::t?;.?sase] e Each specification can be
£ transformed into MANY
Generate Test ] concrete test cases. How
cases many should be tried?

How do we arrive at an effective,
reasonably-sized test suite?
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Category-Partition Method
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Category-Partition Method

A method of generating test specifications from
requirement specifications.

* Adds a small number of additional steps on the
process discussed today.

» Requires identifying categories, choices, and
constraints.

* Once identified, these can be used to automatically
generate a list of test specifications to cover.
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Identify Independently Testable Features
and Parameter Characteristics

 |dentify features and their parameters.

* |dentify characteristics of each parameter.

 \What are the controllable attributes?

« What are their possible values?
May be defined partially by other parameters and their
characteristics.
May not correspond to variables in the code.

« Parameter characteristics are called categories.
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Example: Computer Configurations

* Your company sells custom computers.

« A configuration is a set of options for a model.
« Some combinations are invalid (i.e., VGA monitor with
HDMI video output).
« Testing feature:
e checkConfiguration (model, components)
 What are the parameters?
* Next - what are the choices to be made for each
parameter?
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Parameter Characteristics

* Turn to the requirements specifications.

 Model: A model identifies a specific product and determines a set of
constraints on available components. Models are identified by a model
number. Models are characterized by logical slots on a bug. Slots may be
required (must be filled) or optional (may be left empty).

« Set of Components: A set of <slot, component> pairs, which must
correspond to the required and optional slots associated with the model. A
component is a choice that can be varied within a model. Available
components and a default for each slot is determined by the model. The
special value “empty” is allowed and may be the default for optional slots.
In addition to being compatible or incompatible with a model, components
may be compatible or incompatible with each other.
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Categories

 Model

 Model number

* Number of required slots (must have a selection)

* Number of optional slots (may or may not have a selection)
e Components

« Selected component valid for model

« Number of required/optional slots with non-empty selections

» Selected components for required/optional slots OK/not OK
 Product Database

 Number of models in database

« Number of components in database
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Identify Representative Values

* For each category, many values that can be
selected for concrete test cases.
 We need to identify classes of values, called

choices, for each category.
» Atest specification is a combination of choices for all
categories.

 Consider all outcomes of a feature.
« Consider boundary values.
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Choices for Each Category

Model Product Database

*  Model number *  Number of models in
 malformed database
* notin database « 0
« valid e 1

* Number of required slots * many
- 0 *  Number of components
e 1 in database
* many « 0

*  Number of optional slots e 1
« 0 *  many
e 1
* many

Components

Correspondence of selection with model
slots

o  omitted slots

o extraslots

o  mismatched slots

o complete correspondence
Number of required (or optional)
components with non-empty selections

o 0

o < number required (or optional)

o = number required (or optional)
Selected components for required (or
optional) slots

o some default

o allvalid

o >=1incompatible with slot

o  >=1incompatible with another

component
o >=1notin database
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Generate Test Case Specifications

* Test specifications are formed by combining
choices for all categories.

* Number of possible combinations may be
impractically large, so:
* Eliminate impossible pairings.
 |dentify constraints to remove unnecessary options.

 From the remainder, choose a subset of
specifications to turn into concrete tests.



{8%)) UNIVERSITY OF GOTHENBURG

S
N5

Choices for Each Category

Components
‘% e Seven categories with three choices. "7
ma ® Two categories with 6 choices.
. @ One category with 4 choices. e
\umber¢ o Results in 37 x 6°x 4 = 314928 test 7
1 specifications (or optional)
* ma : - (or optional)
number« ® - However... not all combinations o
i correspond to reasonable
ma specifications. o
o  >=1incompatible with another

component
o >=1notin database
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Identify Constraints Among Choices

Three types of constraint:
e |F

 This partition only needs to be considered if another
property is true.

« ERROR

« This partition should cause a problem no matter what
value the other input variables have.

« SINGLE

* Only a single test with this partition is needed.
T
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Applying Constraints

substr (string str, 1nt index)

Str length Input index

length O [ PROPERTY zeroLen | value <O [ERROR |
length 1 value = 0

length >= 2 value = 1

Str contents value > 1

contains special characters (fifizerolen) value = MAXINT ([SINGLE

contains lower case only  [iflzeroLen™)

contains mixed case _if IzeroLen |

emﬁti i if zeroLen I
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Applying Constraints

Components

Model Product Database

* Model number *  Number of models in
 |malformed [error] | database
* not in database [error] * 0 [error]
« valid * 1 [single]

* Number of required slots *  many
* 0 [single] *  Number of components
* | 1 [property RS]|[single] in database
* [many [property RS] * 0 [error]

L[‘propel"ty_RSIVI?-‘NY| | *  Tsingle] |

*  Number of optional slots * many

* 0 [single]

* 1 [single] [property OS]
°* many [property OS]
[property OSMANY]

Correspondence of selection with model slots
o  omitted slots [error]
o  extra slots [error]
o  mismatched slots [error]
o complete correspondence
Number of required (or optional) components with
non-empty selections
o| 0 [error] [if RS]
o | <number required (or optional) [error] [if
RS] / [if OS]
o = number required (or optional) [if RSMANY]
| [if OSMANY]
Selected components for required (or optional) slots
o  some default [single]
o allvalid
o >=1 incompatible with slot
o >=1 incompatible with another component
o  >=1notin database [error]
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Example - Find Command

Bash command: find
find <pattern> <file>

* Finds instances of a pattern in a file
e find john myFile
« Finds all instances of john in the file
e find “john smith” myFile
* Finds all instances of john smith in the file
e find ““john” smith” myFile
« Finds all instances of john” smith in the file
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Example - Find Command

« Parameters: pattern, file

* What can we vary for each?

« Our categories.

« What can we control about the pattern? Or the file?
* What choices can we make for each category?

« Our categories

* File name:
Name of an existing file provided
File does not exist
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Example - Find Command

. Pattern size: 1944 tests if we consider all combinations.
* Empty e Embedded quotes:
° Single character o no quotes
* many character o one quote
 longer than any line in the file o several quotes
«  Quoting: e File name:

. Existing file name
: tt ted © g
patiern is quote o no file with this name

* not quoated e Number of occurrence of pattern in file:
* improperly quoated o None

- Embedded spaces: o exactly one
o more than one

No spaces e Pattern occurrences on target line:
* One space o One

» Several spaces o more than one
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IF Constraints

« Pattern size:
«  Empty
« single character [not empty]
* many character  [not empty]

678 Tests

« longer than any line in the file [Not empty] o

*  Quoting:

« pattern is quoted [quoted][if not empty]

« notquoted [if not empty]

- improperly quoted [if not empty]

« Embedded spaces:
* No spaces
 One space

and quoted]

[if not empty and quoted]
« Several spaces [if not empty

Embedded quotes:
© no quotes
o one quote [if not empty]
o several quotes [if not empty and
File name: quoted]
o Existing file name
o no file with this name
Number of occurrence of pattern in file:
o None [if not empty]
o exactlyone  [match] [if not empty]
o more than one [match] [if not empty]
Pattern occurrences on target line:
o One [if match]

o more than one [if match]
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ERROR and SINGLE Constraints

Pattern size:

Empty

single character

many character

longer than any line in the file [error]

Quoting:

pattern is quoted
not quoted
improperly quoted [error]

Embedded spaces:
No spaces
One space
Several spaces

Embedded quotes:
O no quotes
o one quote
o several quotes
File name:
o Existing file name
o no file with this name [error]
Number of occurrence of pattern in file:
o None [single]
o exactly one
o more than one
Pattern occurrences on target line:
o One ]
o more than one [single]

40 Tests!

[single]
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We Have Learned

* Requirements-based tests are derived by

+ identifying independently testable features
 partitioning their input/output to identify equivalence
partitions
« combining inputs into test specifications
and removing impossible combinations
* then choosing concrete test values for each specification
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Key Points
* The requirement specifications define the correct
behavior of the system.

« Therefore, the first step in testing should be to derive
tests from the specifications.

* If the specification cannot be tested, you most likely
have a bad requirement.

« Rewrite it so it is testable.
 Remove the requirement if it can’t be rewritten.

» Tests must be written in terms of independently
testable features.
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Key Points

* Not all inputs will have the same outcome, so the
iInputs should be partitioned and test cases should
be derived that try values from each partition.

 Input partitions can be used to form abstract fest
specifications that can be turned into 1+ concrete
test cases.

* |IF/ERROR/SINGLE constraints can remove
unnecessary combinations of input.
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Next Time

« Structural Testing
« Optional Reading: Pezze and Young, Chapters 5.3 and
12
 Homework
« Assignment 1 Due Sunday, February 16
* Any questions?
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