
Lecture 7: Functional Testing

Gregory Gay
DIT635 - February 12, 2020

Where Do Tests Come From?
• Many are derived from requirement specifications.

• The specification defines “correct” behavior.
• The specification exists in some form before code is

written, and guides development.
• Test plans and cases can be developed and refined

as the code is built.
• Functional Testing: The process of deriving tests

from the requirement specifications.

2

Functional Testing
• Deriving tests from the requirement specifications.

• Typically the baseline technique for designing test cases.
Can begin as part of requirements specification, and
continue through each level of design and
implementation.

• Basis of verification - builds evidence that the
implementation conforms to its specification.

• Effective at finding some classes of faults that elude
code-based techniques.

• i.e., incorrect outcomes and missing functionality
3

Partitioning

Requirement Specification

Test Cases

?

● Functional testing is based
on the idea of partitioning.
○ You can’t test individual

requirements in isolation.
○ Instead, we need to

partition the specification
and software into
features that can be
tested.

4

Partitioning

Requirement Specification

Test Cases

?

● Not all inputs have the same
effect.

● Partition the outputs of a
feature into the possible
outcomes.
○ … and the inputs, by

what outcomes they
cause (or other potential
groupings).

5

Creating Requirements-Based Tests
Write Testable
Specifications

Identify Independently
Testable Features

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable requirements.

Figure out what functions can be tested in
(relative) isolation.

What are the outcomes of the feature, and
which input classes will trigger them?

Identify abstract
classes of test cases.

Instantiate concrete
input/output pairs.

6

Specification Verifiability
“The system should be easy to use by experienced
engineers and should be organized in such a way
that user errors are minimized.”

• Problem is the use of vague terms such as
“errors shall be minimized.”

• The error rate must be quantified

7

Example Specifications
• After a high temperature is detected, an alarm must

be raised quickly.
• Novice users should be able to learn the interface

with little training.

How in the world do you make these specifications
verifiable?

8

Test the Requirement
After a high temperature is detected, an alarm must be
raised quickly.
Test Case 1:

• Input:
• Artificially raise the temperature above the high temperature threshold.

• Procedure:
• Measure the time it takes for the alarm to come on.

• Expected Output:
• The alarm shall be on within 2 seconds.

9

Test the Requirement
Novice users should be able to learn the interface with little training.
Test Case 2:

• Input:
• Identify 10 new users and put them through the training course

(maximum length of 6 hours)
• Procedure:

• Monitor the work of the users for 10 days after the training has been
completed

• Expected Output:
• The average error rate over the 10 days shall be less than 3 entry

errors per 8 hours of work.

10

“Fixed” Specifications
• Original: After a high temperature is detected, an alarm must be

raised quickly.
• New: When the temperature rises over the threshold, the alarm

must activate within 2 seconds.

• Original: Novice users should be able to learn the interface with
little training.

• New: New users of the system shall make less than 2 entry
mistakes per 8 hours of operation after 6 hours of training.

11

Detailed is Not Always Testable
• Number of invalid attempts to enter the PIN before

a user is suspended.
• This count is reset when a successful PIN entry is

completed for the user.
• The default is that the user will never be suspended.
• The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)

12

How Many Tests Do You Need?
Testing a single requirement specification does not
mean writing a single test.
• You normally have to write several tests to ensure

that the requirement holds.
• What are the different conditions that the requirement

must hold under?
• Maintain links from tests to the requirements they

cover.

13

Independently Testable Feature
• Requirements are difficult to test in isolation.

However, the system can usually be decomposed
into the functions it provides.

• An independently testable feature is a
well-defined function that can be tested in
(relative) isolation.

• Identified to “divide and conquer” the complexity of
functionality.

14

Units and Features
• Executable tests are typically written in terms of

“units” of code.
• Usually a class or method.
• Until we have a design, we do not have units.

• An independently testable feature is a capability of
the software.
• May not correspond to unit(s).
• Can be at the class, subsystem, or system level.

15

Features and Parameters
Tests for features must be described in terms of
parameters and environmental factors that influence its
execution.
• What are the inputs to that feature?

• User registration on a website might take in:
• (firstName, lastName, dateOfBirth, eMail)

• Consider implicit environmental factors.
• Registration also requires a user database.

• Contents of that database influence execution.
16

Parameter Characteristics
The key to identifying tests is in understanding how the
parameters are used by the feature.
• Type information is helpful.

• firstName is string, database contains UserRecords.
• … but context is important.

• If the database already contains an entry for that
combination of fields, registration should be rejected.

• dateOfBirth is a collection of three integers, but those
integers are not used for any arithmetic operations.

17

Parameter Context
• An input for a feature might be split into multiple

“variables” based on contextual use.
• The database may or may not contain a record for that

user.
• In either case, issues may emerge based on the size of the

database.
• The program may also have issues if a database connection

cannot be established.
• This is three “parameters” for a feature.

18

Examples
Class Registration System
What are some independently testable features?

• Add class
• Drop class
• Modify grading scale
• Change number of credits
• Graphical interface of registration page

19

Examples
Adding a class
What are the parameters?

• Course number to add
• Grading basis
• Student record
• What about a course database? Student record

database?
20

Examples
• Student Record
• Context - how is it used?

• Have you already taken the course?
• Are there holds on your record?
• Do you meet the prerequisites?
• …
• Each of these can be varied when testing.

21

Independently Testable Features
What are three independently testable features of a
spreadsheet?

22

Identifying Representative Values
• We know the features.

We know their
parameters.

• What input values
should we pick?

• What about
exhaustively trying
all inputs?

Test Input Data

Test Output Results

Program

23

Exhaustive Testing
Take the arithmetic
function for the calculator:
add(int a, int b)

• How long would it take
to exhaustively test this
function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

24

Not all Inputs are Created Equal
• We can’t exhaustively test any

real program.
• We don’t need to!

• Some inputs are better than
others at revealing faults, but
we can’t know which in
advance.

• Tests with different input than
others are better than tests
with similar input.

Test Input Data

Test Output Results

Program

Ie

Oe

25

Random Testing
• Pick inputs uniformly from the

distribution of all inputs.
• All inputs considered equal.
• Keep trying until out of time.
• No designer bias.
• Removes manual tedium.

26

Why Not Random?

27

Input Partitioning
Test Input Data

Test Output Results

Program

Ie

Oe

Faults are sparse in the
space of all inputs, but
dense in some parts of the
space where they appear.

By systematically trying input
from each partition, we will
hit the dense fault space.

28

Equivalence Class
• We want to divide the input domain into

equivalence classes.
• Inputs from a group can be treated as the same thing

(trigger same outcome, result in the same behavior, etc.).
• If one test reveals a fault, others in this class (probably)

will too. In one test does not reveal a fault, the other ones
(probably) will not either.

• Perfect partitioning is difficult, so grouping based on
intuition, experience, and common sense.

29

Example
substr(string str, int index)

What are some possible partitions?
● index < 0
● index = 0
● index > 0
● str with length < index
● str with length = index
● str with length > index
● ...

30

Choosing Input Partitions
• Look for equivalent output events.
• Look for ranges of numbers or values.
• Look for membership in a logical group.
• Look for time-dependent equivalence classes.
• Look for equivalent operating environments.
• Look at the data structures involved.
• Remember invalid inputs and boundary conditions.

31

Look for Equivalent Outcomes
• It is often easier to find good tests by looking at the

outputs and working backwards.
• Look at the outcomes of a feature and group input by the

outcomes they trigger.
• Example: getEmployeeStatus(employee ID)

• Manager, Developer, Marketer, Lawyer
• Employee Does Not Exist
• Malformed Employee ID

32

Look for Ranges of Values
• If an input is intended to be a 5-digit integer

between 10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

• Other options: < 0, max int, real-valued numbers
• You may want to consider non-numeric values as a

special partition.

33

Look for Membership in a Group
Consider the following inputs to a program:

• The name of a valid Java data type.
• A floor layout
• A country name.

• All can be partitioned into groups.
• Numeric vs Other data types, Apartment vs Business,

Europe vs Asia, etc.
• All groups can be subdivided further.
• Look for context that an input is used in.

34

Timing Partitions
The timing and duration of an input may be as
important as the value of the input.
• Very hard and very crucial to get right.

• Trigger an electrical pulse 5ms before a deadline, 1ms before
the deadline, exactly at the deadline, and 1ms after the
deadline.

• Push the “Esc” key before, during, and after the program is
writing to (or reading from) a disc.

35

Equivalent Operating Environments
• Environment may affect behavior of the program.
• Environmental factors can be partitioned.

• Memory may affect the program.
• Processor speed and architecture.

• Try with different machine specs.
• Client-Server Environment

• No clients, some clients, many clients
• Network latency
• Communication protocols (SSH, FTP, Telnet)

36

Data Structures
Certain data structures are prone to certain types of
errors. Use those to suggest equivalence classes.

For sequences, arrays, or lists:
• Sequences that have only a single value.
• Different sequences of different sizes.
• Derive tests so the first, middle, and last elements

of the sequence are accessed.
37

Do Not Forget Invalid Inputs!
• Likely to cause problems. Do not forget to

incorporate them as input partitions.
• Exception handling is a well-known problem area.
• People tend to think about what the program should do,

not what it should protect itself against.

• Take these into account with all of the other
selection criteria already discussed.

38

Input Partition Example
What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0

We should also consider the combinations of a and b
that influence the outcome of c:
a > b, a < b, a = b

39

Creating Requirements-Based Tests

Identify Representative
Values

Generate Test Case
Specifications

Generate Test
Cases

For each independently testable
feature, we want to:
1. Identify the representative value

partitions for each input or
output.

2. Use the partitions to form
abstract test specifications for
the combination of inputs.

3. Then, create concrete test cases
by assigning concrete values
from the set of input partitions
chosen for each possible test
specification.

40

Equivalence Partitioning
Feature insert(int N, list A).
Partition inputs into equivalence classes.
1. int N is a 5-digit integer between 10000 and 99999.

Possible partitions:
<10000, 10000-99999, >100000

2. list A is a list of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,
List of Length > 10

41

From Partition to Test Case
Choose concrete values for each combination of input partitions: insert(int
N, list A)

int N

list A

Test Specifications:
insert(< 10000, Empty List)
insert(10000 - 99999, list[1])
insert(> 99999, list[2-10])
etc

Test Cases:
insert(5000, {})
insert(96521, {11123})
insert(150000, {11123, 98765})
etc

< 10000
10000 - 99999
> 99999

Empty List
List[1]
List[2-10]
List[>10]

42

Generate Test Cases
Generate Test Case

Specifications

Generate Test
Cases

substr(string str, int index)

Specification:
str: length >=2, contains
special characters
index: value > 0

Test Case:
str = “ABCC!\n\t7”
index= 5

43

Boundary Values
Basic Idea:
• Errors tend to occur at

the boundary of a
partition.

• Remember to select
inputs from those
boundaries.

44

Choosing Test Case Values
Choose test case values at the boundary (and typical)
values for each partition.
• If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

45

46

Let’s take a break.

Activity - Functional Testing
You are asked to develop a simple C++ container class SetOfE
containing elements of type E with the following methods:
● void insert(E e)
● Bool find(E e)
● void delete(E e)

Using domain partitioning, develop functional test cases for the
methods. You can define your test cases as input/output pairs.

For example, to test insert(E e), one test case could be:
Input: Empty Container/any e Expected output: e in Container.

47

Activity Solution
Insert Empty/ any e e in container

E with one element / any e e in container

E with multiple elements / any e e in container

Very large E/ any e e in container

E containing e/ e Error or no change

Any E/ malformed e Error

Exists E containing e/ e True

E not containing e/ e False

Very large E containing e/ e True

E with only element e/ e True

Any E / malformed e Error

Empty / e False

Delete E containing e/ e e no longer in
list

E not containing e/ e no change (or
error)

Any E / malformed e error

Very large E containing e/ e e no longer in
list

Empty / e no change

48

Building a Test Suite

Identify Representative
Values

Generate Test Case
Specifications

Generate Test
Cases

Smarter process than random
testing, but still comes down to
brute force:
● May still be an infeasibly high

number of test specifications.
● Each specification can be

transformed into MANY
concrete test cases. How
many should be tried?

How do we arrive at an effective,
reasonably-sized test suite?

49

50

Category-Partition Method

Category-Partition Method
A method of generating test specifications from
requirement specifications.
• Adds a small number of additional steps on the

process discussed today.
• Requires identifying categories, choices, and

constraints.
• Once identified, these can be used to automatically

generate a list of test specifications to cover.
51

Identify Independently Testable Features
and Parameter Characteristics
• Identify features and their parameters.
• Identify characteristics of each parameter.

• What are the controllable attributes?
• What are their possible values?

• May be defined partially by other parameters and their
characteristics.

• May not correspond to variables in the code.
• Parameter characteristics are called categories.

52

Example: Computer Configurations
• Your company sells custom computers.
• A configuration is a set of options for a model.

• Some combinations are invalid (i.e., VGA monitor with
HDMI video output).

• Testing feature:
• checkConfiguration(model,components)
• What are the parameters?
• Next - what are the choices to be made for each

parameter?
53

Parameter Characteristics
• Turn to the requirements specifications.
• Model: A model identifies a specific product and determines a set of

constraints on available components. Models are identified by a model
number. Models are characterized by logical slots on a bug. Slots may be
required (must be filled) or optional (may be left empty).

• Set of Components: A set of <slot, component> pairs, which must
correspond to the required and optional slots associated with the model. A
component is a choice that can be varied within a model. Available
components and a default for each slot is determined by the model. The
special value “empty” is allowed and may be the default for optional slots.
In addition to being compatible or incompatible with a model, components
may be compatible or incompatible with each other.

54

Categories
• Model

• Model number
• Number of required slots (must have a selection)
• Number of optional slots (may or may not have a selection)

• Components
• Selected component valid for model
• Number of required/optional slots with non-empty selections
• Selected components for required/optional slots OK/not OK

• Product Database
• Number of models in database
• Number of components in database

55

Identify Representative Values
• For each category, many values that can be

selected for concrete test cases.
• We need to identify classes of values, called
choices, for each category.
• A test specification is a combination of choices for all

categories.
• Consider all outcomes of a feature.
• Consider boundary values.

56

Choices for Each Category
Model

• Model number
• malformed
• not in database
• valid

• Number of required slots
• 0
• 1
• many

• Number of optional slots
• 0
• 1
• many

Components
● Correspondence of selection with model

slots
○ omitted slots
○ extra slots
○ mismatched slots
○ complete correspondence

● Number of required (or optional)
components with non-empty selections

○ 0
○ < number required (or optional)
○ = number required (or optional)

● Selected components for required (or
optional) slots

○ some default
○ all valid
○ >= 1 incompatible with slot
○ >= 1 incompatible with another

component
○ >= 1 not in database

57

Product Database
• Number of models in

database
• 0
• 1
• many

• Number of components
in database

• 0
• 1
• many

Generate Test Case Specifications
• Test specifications are formed by combining

choices for all categories.
• Number of possible combinations may be

impractically large, so:
• Eliminate impossible pairings.
• Identify constraints to remove unnecessary options.
• From the remainder, choose a subset of

specifications to turn into concrete tests.

58

Choices for Each Category
Model

• Model number
• malformed
• not in database
• valid

• Number of required slots
• 0
• 1
• many

• Number of optional slots
• 0
• 1
• many

Components
● Correspondence of selection with model

slots
○ omitted slots
○ extra slots
○ mismatched slots
○ complete correspondence

● Number of required (or optional)
components with non-empty selections

○ 0
○ < number required (or optional)
○ = number required (or optional)

● Selected components for required (or
optional) slots

○ some default
○ all valid
○ >= 1 incompatible with slot
○ >= 1 incompatible with another

component
○ >= 1 not in database

59

Product Database
• Number of models in

database
• 0
• 1
• many

• Number of components
in database

• 0
• 1
• many

● Seven categories with three choices.
● Two categories with 6 choices.
● One category with 4 choices.
● Results in 37 x 62 x 4 = 314928 test

specifications
● However… not all combinations

correspond to reasonable
specifications.

Identify Constraints Among Choices
Three types of constraint:
• IF

• This partition only needs to be considered if another
property is true.

• ERROR
• This partition should cause a problem no matter what

value the other input variables have.
• SINGLE

• Only a single test with this partition is needed.
60

Applying Constraints
substr(string str, int index)
Str length Input index
length 0 value <0
length 1 value = 0
length >= 2 value = 1
Str contents value > 1
contains special characters value = MAXINT
contains lower case only
contains mixed case
empty

PROPERTY zeroLen

if !zeroLen

ERROR

SINGLE

if !zeroLen

if !zeroLen

61

if zeroLen

Applying Constraints
Model

• Model number
• malformed [error]
• not in database [error]
• valid

• Number of required slots
• 0 [single]
• 1 [property RS] [single]
• many [property RS]

[property RSMANY]
• Number of optional slots

• 0 [single]
• 1 [single] [property OS]
• many [property OS]

[property OSMANY]

Components
● Correspondence of selection with model slots

○ omitted slots [error]
○ extra slots [error]
○ mismatched slots [error]
○ complete correspondence

● Number of required (or optional) components with
non-empty selections

○ 0 [error] [if RS]
○ < number required (or optional) [error] [if

RS] / [if OS]
○ = number required (or optional) [if RSMANY]

/ [if OSMANY]
● Selected components for required (or optional) slots

○ some default [single]
○ all valid
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database [error]

62

Product Database
• Number of models in

database
• 0 [error]
• 1 [single]
• many

• Number of components
in database

• 0 [error]
• 1 [single]
• many

Example - Find Command
Bash command: find
find <pattern> <file>

• Finds instances of a pattern in a file
• find john myFile

• Finds all instances of john in the file
• find “john smith” myFile

• Finds all instances of john smith in the file
• find ““john” smith” myFile

• Finds all instances of john” smith in the file

63

Example - Find Command
• Parameters: pattern, file
• What can we vary for each?

• Our categories.
• What can we control about the pattern? Or the file?

• What choices can we make for each category?
• Our categories
• File name:

• Name of an existing file provided
• File does not exist

64

Example - Find Command
• Pattern size:

• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern is quoted
• not quoated
• improperly quoated

• Embedded spaces:
• No spaces
• One space
• Several spaces

65

● Embedded quotes:
○ no quotes
○ one quote
○ several quotes

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

1944 tests if we consider all combinations.

IF Constraints
• Pattern size:

• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern is quoted
• not quoted
• improperly quoted

• Embedded spaces:
• No spaces
• One space
• Several spaces

66

● Embedded quotes:
○ no quotes
○ one quote
○ several quotes

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[not empty]
[not empty]

[not empty]

[quoted][if not empty]
[if not empty]

[if not empty]

[if not empty and quoted]
[if not empty
and quoted]

[if not empty and
quoted]

[if not empty]

[match]
[match]

[if not empty]
[if not empty]

[if not empty]

[if match]
[if match]

678 Tests

ERROR and SINGLE Constraints

67

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern is quoted
• not quoted
• improperly quoted

• Embedded spaces:
• No spaces
• One space
• Several spaces

67

● Embedded quotes:
○ no quotes
○ one quote
○ several quotes

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

[single]

40 Tests!

We Have Learned
• Requirements-based tests are derived by

• identifying independently testable features
• partitioning their input/output to identify equivalence

partitions
• combining inputs into test specifications

• and removing impossible combinations
• then choosing concrete test values for each specification

68

Key Points
• The requirement specifications define the correct

behavior of the system.
• Therefore, the first step in testing should be to derive

tests from the specifications.
• If the specification cannot be tested, you most likely

have a bad requirement.
• Rewrite it so it is testable.
• Remove the requirement if it can’t be rewritten.

• Tests must be written in terms of independently
testable features.

69

Key Points
• Not all inputs will have the same outcome, so the

inputs should be partitioned and test cases should
be derived that try values from each partition.

• Input partitions can be used to form abstract test
specifications that can be turned into 1+ concrete
test cases.

• IF/ERROR/SINGLE constraints can remove
unnecessary combinations of input.

70

71

Next Time
• Structural Testing

• Optional Reading: Pezze and Young, Chapters 5.3 and
12

• Homework
• Assignment 1 Due Sunday, February 16
• Any questions?

