
Lecture 8: Structural Testing

Gregory Gay
DIT635 - February 14, 2020

Every developer must answer:
 Are our tests are any good?

More importantly… Are they good
enough to stop writing new tests?

2

Have We Done a Good Job?
What we want:
• We’ve found all the faults.

• Impossible.

What we (usually) get:
• We compiled and it worked.
• We run out of time or budget.

• Inadequate.

3

Test Adequacy Metrics
Instead - can we compromise between the
impossible and the inadequate?

• Can we measure “good testing”?
• Test adequacy metrics “score” testing efforts by

measuring the completion of a set of test obligations.
• Properties that must be met by our test cases.

4

(In)Adequacy Metrics
• We do not know what faults exist before testing, so

we rely on an approximation of “we found all of the
faults”.

• Criteria identify inadequacies in the tests.
• If the test does not reach a statement, it is inadequate for

finding faults in that statement.
• If the requirements discuss two outcomes of a function,

but the tests only cover one, then the tests are
inadequate for verifying that requirement.

5

Adequacy Metrics
• Adequacy Metrics based on coverage of factors

correlated to finding faults (hopefully).
• Widely used in industry - easy to understand, cheap to

calculate, offer a checklist.
• Some metrics based on coverage of requirement

statements, used for verification.
• Majority based on exercising elements of the source code

in ways that might trigger faults.
• This is the basis of structural testing.

6

We Will Cover
• Structural Testing:

• Derive tests from the program structure, directed by a
chosen adequacy metric.

• Common structural coverage metrics:
• Statement coverage
• Branch coverage
• Condition coverage
• Path coverage

7

Structural Testing
• The structure of the software itself is a valuable

source of information.
• Structural testing is the practice of using that

structure to derive test cases.
• Sometime called white-box testing

• Functional = black-box.

8

Structural Testing
• Uses a family of metrics

that define how and what
code is to be executed.

• Goal is to exercise a
certain percentage of the
code.
• Why??

while (*eptr){
char c;
c = *eptr;
if(c == ‘+’){

*dptr = ‘ ‘;
} else{

*dptr = *eptr;
}

}

9

10

The basic idea:
You can’t find all of the
faults without exercising all
of the code.

Structural Testing - Motivation
• Requirements-based tests should execute most

code, but will rarely execute all of it.
• Helper functions
• Error-handling code
• Requirements missing outcomes

• Structural testing compliments functional testing by
requiring that code elements are exercised in
prescribed ways.

11

Structural Does Not Replace Functional
• Structural testing should not be the basis for “How

do I choose tests?”
• Structure-based tests do not directly make an argument

for verification or expose missing functionality.
• Structural testing is useful for supplementing functional

tests to help reveal faults.
• Functional tests are good at exposing conceptual faults.

Structural tests are good at exposing coding mistakes.

12

Structural Testing Usage
Take code, derive information about
structure, use obligation information to:
• Create Tests

• Design tests that satisfy obligations.
• Measure Adequacy of Existing Tests

• Measure coverage of existing tests,
fill in gaps.

System Under
Test

Test Inputs

DerivesTests

Test Output

13

Control and Data Flow
• We need context on how system executes.
• Code is rarely sequential - conditional statements

result in branches in execution, jumping between
blocks of code.
• Control flow is information on how control passes

between blocks of code.
• Data flow is information on how variables are used

in other expressions.
14

Control-Flow Graphs
• A directed graph representing

the flow of control through the
program.

• Nodes represent sequential
blocks of program commands.

• Edges connect nodes in the
sequence they are executed.
Multiple edges indicate
conditional statements (loops,
if statements, switches).

i++

 i<N

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

15

Structural Coverage Criteria
• Criteria based on exercising of:

• Statements (nodes of CFG)
• Branches (edges of CFG)
• Conditions
• Paths
• … and many more

• Measurements used as (in)adequacy criteria
• If significant parts of the program are not tested, testing is

surely inadequate.

16

Statement Coverage
• The most intuitive criteria. Did we execute every

statement at least once?
• Cover each node of the CFG.

• The idea: a fault in a statement cannot be revealed
unless we execute the statement.

• Coverage = Number of Statements Covered
Number of Total Statements

17

Statement Coverage
int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

How many tests do we need to provide coverage?
What kind of faults could we miss?
Where would we want to use statement coverage?

18

A Note on Test Suite Size
• Level of coverage is not strictly correlated to test

suite size.
• Coverage depends on whether obligations are met.

Some tests might not cover new code.
• However, larger suites often find more faults.

• They exercise the code more thoroughly.
• How code is executed is often more important than

whether it was executed.
19

Test Suite Size
• Generally, favor a large number of targeted tests

over a small suite that hits many statements.
• If a test targets a smaller number of obligations, it is

easier to tell where a fault is.
• If a test executes everything and covers a large number

of obligations, we get higher coverage, but at the cost of
being able to identify and fix faults.

• The exception - cost to execute each test is high.

20

Branch Coverage
• Do we have tests that take all of the control

branches at some point?
• Cover each edge of the CFG.

• Helps identify faults in decision statements.
• Coverage = Number of Branches Covered

Number of Total Branches

21

Subsumption
• Coverage metric (A) subsumes another metric

(B) if, for every program P, every test suite
satisfying A also satisfies B with respect to P.
• If we satisfy A, there is no point in measuring B.
• Branch coverage subsumes statement coverage.

• Covering all edges requires covering all nodes in a graph.

22

Subsumption
• Shouldn’t we always choose the stronger metric?

• Not always…
• Typically require more obligations (so, you have to come up with

more tests)
• Or, at least, tougher obligations - making it harder to come up with

the test cases.
• May end up with a large number of unsatisfiable obligations

23

Branch Coverage
int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

What test obligations must be covered?
How does fault detection potential change?
Where would we want to use branch coverage?

24

Decisions and Conditions
• A decision is a complex Boolean expression.

• Often cause control-flow branching:
• if ((a && b) || !c) { ...

• But not always:
• Boolean x = ((a && b) || !c);

25

Decisions and Conditions
• A decision is a complex Boolean expression.

• Made up of conditions connected with Boolean operators
(and, or, xor, not):

• Simple Boolean connectives.
• Boolean variables: Boolean b = false;
• Subexpressions that evaluate to true/false involving (<, >, <=, >=, ==,

and !=): Boolean x = (y < 12);

26

Decision Coverage
• Branch Coverage deals with a subset of decisions.

• Branching decisions that decide how control is routed
through the program.

• Decision coverage requires that all boolean
decisions evaluate to true and false.

• Coverage = Number of Decisions Covered
Number of Total Decisions

27

Basic Condition Coverage
• Several coverage metrics examine the individual

conditions that make up a decision.
• Identify faults in decision statements.

(a == 1 || b == -1) instead of (a == -1 || b == -1)

• Most basic form: make each condition T/F.
• Coverage = Number of Truth Values for All Conditions

2x Number of Conditions

28

Basic Condition Coverage
• Make each condition both True and False

• Does not require hitting both branches.
• Does not subsume branch coverage.
• In this case, false branch is taken for both tests

Test Case A B
1 True False
2 False True

(A and B)

29

Basic Condition Coverage
int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

What test obligations must be covered?
How does fault detection potential change?
Where would we want to use condition coverage?

30

Compound Condition Coverage
• Evaluate every combination of the conditions

• Subsumes branch coverage, as all outcomes are
now tried.

• Can be expensive in practice.

Test Case A B

1 True True

2 True False

3 False True

4 False False

(A and B)

31

Compound Condition Coverage
• Requires many test cases.

(A and
(B and
(C and
D))))

Test Case A B C D

1 True True True True

2 True True True False

3 True True False True

4 True True False False

5 True False True True

6 True False True False

7 True False False True

8 True False False False

9 False True True True

10 False True True False

11 False True False True

12 False True False False

13 False False True True

14 False False True False

15 False False False True

16 False False False False

32

Short-Circuit Evaluation
• In many languages, if the first condition determines

the result of the entire decision, then fewer tests are
required.
• If A is false, B is never evaluated.

Test Case A B

1 True True

2 True False

3 False -

(A and B)

33

Modified Condition/Decision Coverage(MC/DC)
• Requires:

• Each condition evaluates to true/false
• Each decision evaluates to true/false
• Each condition shown to independently affect outcome

of each decision it appears in.
Test Case A B (A and B)

1 True True True
2 True False False
3 False True False
4 False False False

34

35

Let’s take a break.

Activity
Draw the CFG and write tests that provide statement, branch,
and basic condition coverage over the following code:
int search(string A[], int N, string what){
 int index = 0;
 if ((N == 1) && (A[0] == what)){

return 0;
 } else if (N == 0){
 return -1;
 } else if (N > 1){
 while(index < N){
 if (A[index] == what)
 return index;
 else
 index++;
 }
 }
 return -1;
}

36

Activity
index=0

(N==1) &&
(A[0] = what)

return 0;

N==0
False

True

return -1;

True

N>1
False

return -1;
False

index
< N

True

A[index]
== what

True

return index;True

index++;
False

False

37

Activity - Possible Solution
index=0

(N==1) &&
(A[0] = what)

return 0;

N==0
False

True

return -1;

True

N>1
False

return -1;
False

index
< N

True

A[index]
== what

True

return index;
True

index++;
False

False

1: A[“Bob”, “Jane”], 2, “Jane”
2: A[“Bob”, “Jane”], 2, “Spot”
3: A[], 0, “Bob”
4. A[“Bob”], 1, “Bob”
5. A[“Bob”], 1, “Spot”

38

Path Coverage
• Other criteria focus on single elements.

• However, all tests execute a sequence of elements - a
path through the program.

• Combination of elements matters - interaction sequences
are the root of many faults.

• Path coverage requires that all paths through the
CFG are covered.

• Coverage = Number of Paths Covered
Number of Total Paths

39

Path Coverage
int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

In theory, path coverage is the ultimate coverage metric.
In practice, it is impractical.
● How many paths does this program have?

40

How many cases
for Statement

Branch
Path

Path Coverage

loop <= 20

41

Number of Tests
Path coverage for that loop bound requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the benefits of
path coverage without the cost...

42

Path Coverage
• Theoretically, the strongest coverage metric.

• Many faults emerge through sequences of interactions.
• But… Generally impossible to achieve.

• Loops result in an infinite number of path variations.
• Even bounding number of loop executions leaves an

infeasible number of tests.

43

Boundary Interior Coverage
• Need to partition the infinite set of paths into a finite

number of classes.
• Boundary Interior Coverage groups paths that

differ only in the subpath they follow when
repeating the body of a loop.
• Executing a loop 20 times is a different path than

executing it twice, but the same subsequences of
statements repeat over and over.

44

Boundary Interior Coverage
A

B

M C

D E

F G

H I

L

A

B

M C

D E

F G

H I

L L

L

L

B

BB

B

B -> M

B -> C -> E -> L -> B

B -> C -> D -> F -> L -> B

B -> C -> D -> G -> H -> L -> B

B -> C -> D -> G -> I -> L -> B

45

Number of Paths
• Boundary Interior Coverage

removes the problem of infinite
loop-based paths.

• However, the number of paths
through this code can still be
exponential.

• N non-loop branches results in 2N
paths.

• Additional limitations may need to
be imposed on the paths tested.

if (a) S1;
if (b) S2;
if (c) S3;
…
if (x) SN;

46

Loop Boundary Coverage
• Focus on problems related to loops.

• Cover scenarios representative of how loops might be executed.

• For simple loops, write tests that:
• Skip the loop entirely.
• Take exactly one pass through the loop.
• Take two or more passes through the loop.
• (optional) Choose an upper bound N, and:

• M passes, where 2 < M < N
• (N-1), N, and (N+1) passes

47

Nested Loops
• Often, loops are nested within other loops.

• For each level, you should execute similar strategies to
simple loops.

• In addition:
• Test innermost loop first with outer loops executed

minimum number of times.
• Move one loops out, keep the inner loop at “typical”

iteration numbers, and test this layer as you did the
previous layer.

• Continue until the outermost loop tested.
48

Concatenated Loops
• One loop executes. The next line of code starts a

new loop.
• These are generally independent.

• Most of the time...

• If not, follow a similar strategy to nested loops.
• Start with bottom loop, hold higher loops at minimal iteration

numbers.
• Work up towards the top, holding lower loops at “typical”

iteration numbers.

49

Why These Loop Strategies?
• In proving formal correctness of a loop, we would establish

preconditions, postconditions, and invariants that are true on
each execution of the loop, then prove that these hold.
• The loop executes zero times when the postconditions

are true in advance.
• The loop invariant is true on loop entry (one), then each

loop iteration maintains the invariant (many).
• (invariant and !(loop condition) implies postconditions)

• Loop testing strategies echo these cases.
50

The Infeasibility Problem
Sometimes, no test can satisfy an obligation.
• Impossible combinations of conditions.
• Unreachable statements as part of defensive

programming.
• Error-handling code for conditions that can’t actually

occur in practice.
• Dead code in legacy applications.
• Inaccessible portions of off-the-shelf systems.

51

The Infeasibility Problem

Problem compounded for path-based
coverage criteria.
Not possible to traverse the path where
both if-statements evaluate to true.

if (a < 0) a = 0;
if (a > 10) a = 10;

Stronger criteria call for potentially infeasible
combinations of elements.

(a > 0 && a < 10)
It is not possible for both conditions to be false.

52

The Infeasibility Problem
How this is usually addressed:
• Adequacy “scores” based on coverage.

• 95% branch coverage, 80% MC/DC coverage, etc.
• Decide to stop once a threshold is reached.
• Unsatisfactory solution - elements are not equally

important for fault-finding.
• Manual justification for omitting each

impossible test obligation.
• Helps refine code and testing efforts.
• … but very time-consuming.

53

In Practice.. Budget Coverage
• Industry’s answer to “when is testing done”

• When the money is used up
• When the deadline is reached

• This is sometimes a rational approach!
• Implication 1:

• Adequacy criteria answer the wrong question. Selection is more
important.

• Implication 2:
• Practical comparison of approaches must consider the cost of test

case selection

54

Which Coverage Metric Should I Use?

Statement Coverage

Branch Coverage Basic Condition
Coverage

Branch and Condition
Coverage

MC/DC Coverage

Compound Condition
Coverage

Path Coverage

Power,
Cost

Can Be Impractical
Boundary Interior

Testing

Loop Boundary Testing

55

Activity: Loop-Covering Tests
For the binary-search code:
1. Draw the control-flow graph for the method.
2. Identify the subpaths through the loop and draw the

unfolded CFG for boundary interior testing.
3. Develop a test suite that achieves loop boundary

coverage.

56

CFG
int bott, top, mid;
bott=0; top=size-1;
L = 0;

T[L]
== key

found=false;found=true;

FT

bott<=top
&& !found EXIT

F

mid=round(top +
bott/2);

T

T[mid]
== key

found=true;
L= mid;

T
T[mid]
< key

F
bott=mid+1;

top=mid-1;

T

F

57

CFG
A

B

DC

FT

EXIT
F

F

T

G

H
T

I
F J

K

T

F

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

58

CFG
A

B

DC

FT

EXIT
F

F

T

G

H
T

I
F J

K

T

F

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

E

E

E

59

CFG
A

B

DC

FT

EXIT
F

F

T

G

H
T

I
F J

K

T

F

E

Tests that execute the loop:
● 0 times
● 1 time
● 2+ times

key = 1, T = [1], size = 1
key = 2, T = [1, 2], size = 2
key = 3, T = [1, 2, 3], size = 3

60

We Have Learned
• Test adequacy metrics let us “measure” how good

our testing efforts are.
• They prescribe test obligations that can be used to

remove inadequacies from test suites.
• Code structure is used in many adequacy metrics.

Many different criteria, based on:
• Statements, branches, conditions, paths, etc.

61

We Have Learned
• Coverage metrics tuned towards particular types of

faults. Some are theoretically stronger than others,
but are also more expensive and difficult to satisfy.

• Full path coverage is impractical
• However, there are strategies to get the benefits of path

coverage without the cost.
• These strategies are based on covering “important” paths

or subpaths.

62

63

Next Time
• Exercise Today: Functional Testing
• Next class: Data-Flow Testing

• Optional Reading - Pezze and Young, Chapters 6 and 13

• Homework - Assignment 1 due Sunday, Feb 16

