

DIT635 - Assignment 1: Quality and System Testing
Due Date: Sunday, February 14th, 23:59 (Via Canvas)

There are four questions, worth a total of 100 points. You may discuss these problems in your
teams and turn in a single submission for the team (zipped archive) on Canvas. Answers must
be original and not copied from online sources.

Cover Page: On the cover page of your assignment, include the name of the course, the date,
your group name, and a list of your group members.

Peer Evaluation: All students must also submit a peer evaluation form. This is a separate,
individual submission on Canvas. Not submitting a peer evaluation will result in a penalty of five
points on this assignment.

Problem 1 - Quality Scenarios (30 Points)

Consider the software for air-traffic control (ATC) at an airport (say, GOT). ATC is a service
provided by ground-based air traffic controllers (the users of this system) who direct aircraft on
the ground and through controlled airspace with the help of the software.

The purpose of the ATC software is to prevent collisions, organize and expedite the flow of air
traffic, and provide information and other support for pilots.

The software offers the following features:

● Monitors the location of all aircraft in a user’s assigned airspace.
● Communication with the pilots by radio signal (via voice over IP/VOIP).
● Generation of routes for individual aircraft, intended to prevent collisions.
● Scheduling of takeoff for planes, intended to prevent potential collisions.
● Alerts of potential collisions based on current bearing of all aircraft.

○ To prevent collisions, ATC applies a set of traffic separation rules, which ensure
each aircraft maintains a minimum amount of empty space around it at all times.

○ The route advice can be either of “mandatory” priority (to prevent an imminent
collision, pilots should follow this command unless there is a good reason not to)
or “advisory” priority (this advice is likely to result in a safe route, but a pilot can
choose to ignore it).

You may add additional features or make decisions on how these features are implemented, as
long as they fit the overall purpose of the system. In any case, state any assumptions that you
make and describe any features you create.

For this air traffic control system:

● Identify one reliability, one availability, one performance, one scalability, and one
security requirement that you think would be necessary for this software.

● Develop a quality scenario for each requirement to assess whether the final air
traffic control system will fulfill the desired quality attribute.

Use the quality scenario format from Lecture 3: Overview, System State, Environment State,
External Stimulus, Required System Response, Response Measure

State any assumptions you make about the design or functionality of this software.
Requirements should be specific and testable. Scenarios should have single stimuli and
specific and measurable system responses.

Problem 2 - System Test Design (40 Points)
The tail utility is one of the most common command-line tools used in Mac OS, Ubuntu, and
other Linux or Unix-based operating systems.

tail [ONE OR MORE OPTIONS] [FILENAMES OF ONE OR MORE FILES]

tail takes in one or more options and one or more filenames and then prints the last N (by
default, 10) lines of the listed files to the screen.

If you have a computer running Mac OS X, any Linux distribution, or the Windows Subsystem
for Linux, you can open a command line and try this tool yourself. There are also browser-based
Linux shells you can use to try the tool . 1

We have included the documentation for the tool below. After reviewing the documentation and
trying this tool, create system test cases using the process described in Lecture 5-6:

1. Given the explicit parameters (the list of options and the filename) and other
environmental considerations (like the contents and existence of the file), identify the
choices you control when testing.

2. For each choice, Identify representative input values.
a. These should not be concrete inputs (e.g., “4”) but abstract types of input that

could change the outcome (e.g., “a number > 0 and < size of the file”)
3. To control the number of test cases, identify constraints (IF, ERROR, SINGLE) that limit

the combinations of representative values that will be explored when testing.

See page 187 in the textbook for an example solution to a similar problem discussed in the
book. See Exercise Session 2 for another example of this process.

Hint - A user can provide multiple options at once. As a starting point, you might want to look at
the options as potential choices and the values that can be provided as representative values.
Read the documentation carefully, and note that some options interact with other options or with
the files provided. Constraints and representative values should reflect these interactions.

1For example, https://cocalc.com/doc/terminal.html

https://cocalc.com/doc/terminal.html

Tail Documentation
 tail [ONE OR MORE OPTIONS] [FILENAMES OF ONE OR MORE FILES]

Print the last 10 lines of each FILE to standard output. With more than one FILE, precede each
with a header giving the file name. With no FILE, or when FILE is -, read standard input.

Note – when a flag uses capital letters for input (for example, --pid=PID), that means that the
user supplies a value. When lower-case is used (for example, --follow=name), that means the
literal word is used (name, in this case).

OPTIONS

● --bytes=K
○ output the last K bytes; or use --bytes +K to output bytes starting with the Kth of

each file
● --follow[={name or descriptor}]

○ output appended data as the file grows; an absent option argument means
'descriptor'

● -F
● same as --follow=name --retry
● --lines=K

○ output the last K lines, instead of the last 10; or use --lines +K to output starting
with the Kth

● --max-unchanged-stats=N
○ with --follow=name, reopen a FILE which has not changed size after N (default 5)

iterations to see if it has been unlinked or renamed (this is the usual case of
rotated log files); with inotify, this option is rarely useful

● --pid=PID
○ with --follow, terminate after process ID, PID dies

● --quiet
○ never output headers giving file names

● --retry
○ keep trying to open a file if it is inaccessible

● --sleep-interval=N
○ with --follow, sleep for approximately N seconds (default 1.0) between iterations;

with inotify and --pid=P, check process P at least once every N seconds
● --verbose

○ always output headers giving file names
● --help

○ display this description text and exits
● --version

○ output version information and exit

If the first character of K (the number of bytes or lines) is a '+', print beginning with the Kth item
from the start of each file, otherwise, print the last K items in the file. K may have a multiplier
suffix: b 512, kB 1000, K 1024, MB 1000*1000, M 1024*1024, GB 1000*1000*1000, G
1024*1024*1024, and so on for T, P, E, Z, Y.

With --follow, tail defaults to following the file descriptor, which means that even if a tail'ed file is
renamed, tail will continue to track its end. This default behavior is not desirable when you
really want to track the actual name of the file, not the file descriptor (e.g., log rotation). Use
--follow=name in that case. That causes tail to track the named file in a way that
accommodates renaming, removal and creation.

Problem 3 - System Test Design (with Postman) (30 Points)
Consider the following REST API: http://dummy.restapiexample.com/ (there is more
documentation at the URL). This API surfaces the following functions:

1. If you do not have one already, create a free account at https://www.postman.com/
2. Use Postman to create tests for this API.

a. Create 12 test cases in total, with at least one test case for each of these
five API functions.

b. Test cases should test both normal functionality as well as handling of
erroneous input. Test cases may, optionally, also address performance
aspects such as response time.

3. In your report, include the request type, body, tests, and any other information
that you used as part of your test cases.

You may use the process described in Lectures 5-6 (with choices, representative values, and
constraints), but do not have to. Use your creativity and the test snippets provided by Postman
to ensure that this API works as expected. Try error cases, like an ID of 0, and see if the API
works as expected. You may want to consider adding tests to check for quality goals like
performance as well.

We assume you have learned some basics about testing of APIs in DIT 341, but please talk to
us if you have questions. For a starting place on testing in Postman, see
https://learning.postman.com/docs/writing-scripts/test-scripts/

2 If you want to verify the normal results of /employee/{id}, use an ID between 1-24. IDs of 0 or higher than
24 are great for checking “error” cases.
3 Note - the POST/PUT/DELETE methods do not actually make permanent changes in this example. You
will get an appropriate response, but the record will not actually be created, updated, or deleted. You can
use the result body to verify the “results” of running these three functions.

Route Method Example URL Description

/employee GET http://dummy.restapiexample.com/api/v1/employe
es

Get all employee data

/employee/{id} GET http://dummy.restapiexample.com/api/v1/employe
e/1

Get data for a single
employee 2

/create POST http://dummy.restapiexample.com/api/v1/create Create a new record in
the database 3

/update/{id} PUT http://dummy.restapiexample.com/api/v1/update/2
1/

Update an employee
record.

/delete/{id} DELETE http://dummy.restapiexample.com/api/v1/delete/2/ Delete an employee
record.

http://dummy.restapiexample.com/
https://www.postman.com/
https://learning.postman.com/docs/writing-scripts/test-scripts/
http://dummy.restapiexample.com/api/v1/employees
http://dummy.restapiexample.com/api/v1/employees
http://dummy.restapiexample.com/api/v1/employee/1
http://dummy.restapiexample.com/api/v1/employee/1
http://dummy.restapiexample.com/api/v1/create
http://dummy.restapiexample.com/api/v1/update/21/
http://dummy.restapiexample.com/api/v1/update/21/
http://dummy.restapiexample.com/api/v1/delete/2/

