

DIT635 - Assignment 2: Unit and Structural Testing
Due Date: ​Sunday, February 28th, 23:59 (Via Canvas)

There are two questions worth a total of 100 points. You may discuss these problems in your
teams and turn in a single submission for the team (zipped archive) on Canvas. Answers must
be original and not copied from online sources.

Cover Page:​ On the cover page of your assignment, include the name of the course, the date,
your group name, and a list of your group members.

Peer Evaluation:​ All students must also submit a peer evaluation form. This is a separate,
individual submission on Canvas. Not submitting a peer evaluation will result in a penalty of five
points on this assignment.

Problem 1 - Unit Testing (60 Points)

Software engineers love caffeine, so we are planning to install a new coffee maker in the
classroom. Fortunately, the CSC department at North Carolina State University (NCSU) has
developed control software for a shiny new CoffeeMaker and has provided us with that code.
We just have to test it.

You will be working with the JUnit testing framework to create unit test cases, find bugs, and
fix the CoffeeMaker code from NCSU’s OpenSeminar project repository (thanks to
the authors!). The example code comes with some seeded faults.

For this exercise, you are required to create a plan, implement the plan as unit test cases for all
the application classes with JUnit, execute those against the code, detect faults, and fix as
many issues as possible.

Your submission should include:

1) Test Descriptions. The core functionality of the system is defined by the user interface
(offered by the Main class). Based on your exploration of the system and its functionality,
you will formulate a plan for how you will write unit tests for CoffeeMaker, Inventory,
Recipe, and RecipeBook (excluding Main and the exceptions) to ensure that they deliver
system functionality, free of faults. This document will describe the unit tests that you
have created, including a description of what each test is intended to do and how it
serves a purpose in verifying system functionality. Your tests must cover the major
system functionality, including both normal usage and erroneous input. You must explain
why your tests will cover all major functionality.

2) Unit tests implemented in the JUnit framework.

3) Instructions on how to set-up and execute your tests (if you used any external libraries
other than JUnit itself, or did anything non-obvious when creating your unit tests).

4) List of faults found, along with a recommended fix for each and a list of test cases that
expose the fault.

5) If you find faults (by other means, such as exploratory testing) that are not detected by
your unit tests, describe the additional unit tests that you would need to detect those
faults.

Relevant links:

● CoffeeMaker code and sample tests ​(do not turn in the sample tests as your own)​ -
https://canvas.gu.se/courses/42587/files/folder/Assignments?preview=4149962

● jUnit - ​http://junit.org/
(We recommend using a Java IDE - such as Eclipse or IntelliJ - that makes it easier to
integrate JUnit into the development environment.)

● IntelliJ - help on setting up JUnit -
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

● Eclipse - help setting up JUnit -
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fgetting
Started%2Fqs-junit.htm

Points will be divided up as follows: 15 points for test plan, 25 points for unit tests, 10 points for
detecting faults, and 10 points for the suggested fixes to the codes.

Problem 2 - Structural Coverage (40 Points)
After testing the CoffeeMaker using your knowledge of the functionality of a coffee machine and
your own intuition, you have decided to also use the source code as the basis of additional unit
tests intended to strengthen your existing testing efforts.

You have identified the following methods in particular as worthy of attention:

● CoffeeMaker::makeCoffee
● Inventory::addSugar
● Recipe::setPrice
● RecipeBook::addRecipe

1. Design unit tests to achieve full Branch Coverage over these four methods. Describe

what code elements each test should cover, and why.

https://canvas.gu.se/courses/42587/files/folder/Assignments?preview=4149962
http://junit.org/
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2FgettingStarted%2Fqs-junit.htm

2. Measure the Line Coverage (this is the same as Statement Coverage) of your unit tests
(including those from Problems 1 and 2) . Include a coverage report in your submission, 1

detailing the coverage achieved by your code . 2

3. If your tests have not achieved 100% Line Coverage of CoffeeMaker, Inventory, Recipe,
and RecipeBook (excluding Main and the exceptions), design additional test cases to
complete Line Coverage. If Line Coverage cannot be fully achieved, explain why.

1 To measure coverage in IntelliJ, see ​https://www.jetbrains.com/help/idea/code-coverage.html​. You may
use any of the three coverage runners. In Eclipse, use EclEmma: ​https://www.eclemma.org/​. If using the
command line, use EMMA: ​http://emma.sourceforge.net/​.
2 Both the IntelliJ coverage runner and EclEmma can output a report (e.g.,
https://www.jetbrains.com/help/idea/viewing-code-coverage-results.html#coverage-in-editor​). Be sure that
you include all files (i.e., not just index.html).

https://www.jetbrains.com/help/idea/code-coverage.html
https://www.eclemma.org/
http://emma.sourceforge.net/
https://www.jetbrains.com/help/idea/viewing-code-coverage-results.html#coverage-in-editor

