
DIT635 - System Testing Exercise

First, if you have not finished the activities from Lecture 6 (this morning), do so!

The airport connection check is a high-level function exposed by the API of a travel reservation
system. It is intended to check the validity of a single connection between two flights in an
itinerary.

For example, a traveler may intend to fly from Gothenburg to Los Angeles, but there is a
connection through Frankfurt. Therefore, their itinerary is Gothenburg -> Frankfurt (Flight A) and
Frankfurt -> Los Angeles (Flight B).

This service will ensure that the connection through Frankfurt is a valid one. For example, if the
arrival airport of Flight A differs from the departure airport of Flight B, the connection is invalid.
That is, if we pass in two flights, and Flight A arrives in Frankfurt, but Flight B departs from
Munich, is it not a valid connection.

Likewise, if the departure time of Flight B is too close to the arrival time of Flight A, the
connection is invalid. If Flight A arrives in Frankfurt at 8:00, and Flight B departs at 8:05, there is
not sufficient time to complete the customs process and board the flight.

validConnection(Flight flightA, Flight flightB)
 returns ValidityCode

A Flight is a data structure consisting of:

● A unique identifying flight code (string, three characters followed by four numbers).
● The originating airport code (three character string).
● The scheduled departure time from the originating airport (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time at the destination airport (in universal time).

There is also a flight database, where each record contains:

● Three-letter airport code (three character string).
● Airport country (string).

○ If the country is in the Schengen Area, this is indicated instead of the home
country.

● Minimum domestic connection time (integer, minimum number of minutes that must be
allowed for flight connections to be valid).

● Minimum international connection time (more time is required due to need to clear
customs and meet regulations)

Note that connection times are calculated based on originating airport and destination airport of
Flight A. If the country of Flight A’s originating and destination airports differ, then the
international connection time is required. For example, if you flew from Los Angeles to Frankfurt
(USA -> Schengen Area), then the traveler would need to clear customs before boarding flight
B. This requires a longer connection time. If Flight A’s originating airport is in a Schengen Area

country, connections to all other Schengen Area countries are considered to be “domestic
flights” and do not require completion of customs.

ValidityCode is an integer with value 0 for OK, 1 for invalid airport code, 2 for a connection
that is too short, 3 for flights that do not connect (Flight A does not land in the same location that
Flight B departs from), or 4 for any other errors (malformed input or any other unexpected
errors).

Design system test cases using the category-partition method for the validConnection
function.

1. Identify choices (aspects that you control and that can vary the outcome) for the
two input flights and the database.

2. For each choice, identify a set of representative values.
3. Apply ERROR, SINGLE, and IF constraints.

a. ERROR = This representative value will trigger an error no matter that it is
paired with.

b. SINGLE = This representative value should give an OK response, but we
want to make sure we try it once.

c. IF = This representative value can only be used if a certain value is set for
another choice.

Hints:

Recall the lectures on system testing. The approximate process of writing system tests is to:

1. For each high-level independently testable feature surfaced by an interface, you need
to identify the parameters. These can be explicit (passed into the function) or implicit
(configuration options or other environmental factors - such as databases - that influence
the outcome of the function).

2. Each parameter can be manipulated in many ways through testing. For each parameter,
you must identify choices - aspects of that input that you can vary, and that will have
some impact on the outcome of testing this function. For example, if an input is a data
structure, the choices might include fields of that data structure that impact the outcome
of the function. If that data structure is serialized from a file, then choices may include
the status of the file (whether that file exists, is corrupted, and so on).

3. You cannot exhaustively test a function, there are too many possible values that can be
fed in. So, instead, you partition the input domain for each choice into representative
values (types of input). If you try at least one concrete input from each of these value
types, you should trigger different outcomes and be more likely to notice faults. We
discussed some methods of performing this partitioning in class.

4. Once representative values are chosen, you can form test specifications - abstract
recipes for tests - by choosing one value for each choice. You can transform these
recipes into actual test cases by coming up with concrete input values that fit into the
category of value for each choice.

In this exercise, you have been asked to perform Steps 1-3 above - identify the parameters, split
the parameters into choices, then partition the input values for each choice into representative
values. You can constrain the number of test specifications by adding further constraints
(ERROR, SINGLE, IF) that note when certain representative values should be used in
combination with other values. Note that you do not have to use all constraints (i.e., you do
not need to use SINGLE unless it makes sense to do so).

This function has two explicit inputs - the two flights - and an implicit input - an airport database.
A flight is a complex data structure containing several fields, each of those fields represents a
controllable input category. Your choices should revolve around those fields.

Remember that the function’s parameters may influence each other (testing this function
requires considering both Flight A and B’s field values as well as what is in the database), so
the representative values must reflect how different choices or variables can interact.
IF-constraints are also a good way to indicate when representative values for two choices
should be paired.

