
DIT635 - Mutation Testing Exercise

First, if you have not finished the activity from Lecture 11 (Fault-Based Testing), do so!

In previous exercises, you wrote unit tests for a Meeting Planner system based on both the
functionality and code structure. We will now return to the Meeting Planner one last time to
assess the sensitivity of your test cases to seeded faults in the code.

1. Create at least four mutants for classes of your choice in the MeetingPlanner code.
a. One mutant must be invalid (does not compile).
b. One must be equivalent to the original code (you inserted a fault, but no test

case can possibly yield a different solution to the original).
c. One mutant must be valid-but-not-useful (all tests, or almost all tests, will

expose this mutation).
d. The last mutant must be useful (only a small number of specific tests will expose

this mutation).
e. Each mutant must be created by applying a different mutation operator, and you

must use at least one mutation operator from each of the three categories in the
attached handout (for more information, see Chapter 16 of Software Testing and
Analysis).

f. You do not have to use the same classes or methods for all mutant categories.
Try mutating different parts of the code. You may use any class except Main or
the exception.

2. Assess your test cases that you created in previous exercises, with respect to the set of
mutants that you derived - Are you able to kill all of the non-equivalent mutants with your
test suite? If not, write additional tests that can kill those non-equivalent mutants.

a. Test cases that expose a mutant pass on the original code and fail on the
mutated code.

If you finish early, try adding mutations to the CoffeeMaker classes from Homework Assignment
2. Do your unit tests detect those mutations? (This will be part of Assignment 3).




