
Lecture 11: Fault-Based Testing

Gregory Gay
DIT635 - February 24, 2021

Space Shuttle Challenger
• Seal failure in rocket booster causes

explosion, killing seven astronauts.
• Three year investigation found

technical and organizational issues.
• Became a case example studied in

many forms of engineering.
• Learn from your failures.

2

Fault-Based Testing
• By studying faults in previous designs, we can

prevent similar faults in new designs.
• Many testing techniques based on what we think

should happen.
• We can also design tests based on knowledge of

what has gone wrong in other programs.

3

Used in Language Design
• Automated Garbage Collection

• Prevents dangling pointers, memory leaks, other memory
management faults.

• Automatic Array Bounds Checking
• Does not prevent bad indexes from being used, but

ensures they are noticed and limits damage.

• Type Checking
• Prevents malformed values from being used as input or

in computations.
4

Fault-Based Testing
• Consider the types of faults we expect to see.

• Create mutated versions of the program.
• See if tests fail for those mutated versions.

• Fault Seeding
• Deliberately creating programs with faults to see if our

tests are good enough to detect them.
• May help us find new faults in the unmutated program.

5

Uses of Fault Seeding

• Fault seeding can be used to:
• Judge the adequacy of a test suite.
• Design test cases to augment a suite.

• Provides evidence that we have done a good job.
• If our tests have not found faults, are there no more major

issues, or are they bad tests?

6

Mutation Testing
• Encode common faults as

mutation operators.
• Insert the modeled fault into

program statements.

• Produces a mutant.
• A clone of the program with

1+ seeded faults.

SUT

Mutant

Mutation
Operator

if((a == 1) && !b){ ...

if((a == 1) || !b){ ...

7

8

Mutants
• “First-Order Mutants” (our focus)

• One line modified.
• Easy to create, many tools to insert them.
• Most common, but not as realistic.

• “Higher-Order Mutants”
• Multiple lines modified.
• Harder to create, not well understood.
• May be more realistic.

9

Mutation Operators

Mutation Operators
• Intended to model common types of faults.
• Designed to be applied to any type of code, without

human intervention.
• Tend to be simple syntactic faults.

• Replacing one variable reference with another.
• Changing a comparison from < to <=.
• Referencing a parent class instead of a child.

10

Operand Modifications
• X for Y replacement

• Replace constant C1 with constant C2.
• int X = 72; -> int X = 135;

• Replace constant C with variable S.
• int Y = 135; int X = 72; -> int Y = 135; int X = Y;

• Replace variable S for constant C.
• int X = Y; -> int X = 72;

• Replace variable S1 with variable S2.
• int X = Y; -> int X = Z;

11

Operand Modifications
• X for Y replacement

• Replace variable/constant with array reference A[I].
• int X = Y; -> int X = A[4];

• Replace array reference A[I] with variable/constant.
• int X = A[4]; -> int X = Y;

• Replace array reference with another array reference.
• Either another array or another index in the same array.
• int X = A[4]; -> int X = A[10];

12

Expression Modifications
• Arithmetic Operators

• Binary operators: x (+, -, *, /, %) y
• Unary operators: +x, -x
• Shortcut operators: x++, ++x, x--, --x

• Arithmetic Operator Replacement
• Replace binary/unary/shortcut operator with another.

• Z = X + Y; -> Z = X - Y;
• Replace shortcut/unary operator with a unary/shortcut.

• Z = --X; -> Z = -X;

13

Expression Modifications
• Arithmetic Operator Insertion

• Insert an additional operator into an expression.
• int Z = X; -> int Z = X + Y;
• int Z = X; -> int Z = X++;

• Arithmetic Operator Deletion
• Remove an operator from an expression.
• int Z = X + Y; -> int Z = X;
• int Z = X++; -> int Z = X;

14

Expression Modifications
• Conditional Operators

• Binary: x (&&, ||, &, |, ^) y
• Unary: (~, !)x

• Relational Operators
• x (>, >=, <, <=, ==, !=) y

• Shift Operators
• x (>>, <<, >>>>) y

• Operator Replacement, Insertion, Deletion
• Works like arithmetic operators.

15

Expression Modifications
• Shortcut Operators

• x (+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=) y
• Shortcut Operator Replacement

• Absolute Value Insertion
• Replace a subexpression with abs(e).

• int Z = X + Y; -> int Z = abs(X + Y);

• Constant for Predicate Replacement
• Replace boolean predicate with a constant value (T/F).

• bool Z = (A || B) && C; -> bool Z = (A || true) && C;

16

Statement Modifications
• Statement Deletion

• Remove a random statement from the program.
• Switch Case Replacement

• Replace the label of one case with another.
• End Block Shift

• Move closing brackets to an earlier or later location.

17

Encapsulation/Inheritance
• Access Modifier Change

• Change a modifier to (public/protected/private)
• public void DoThis(int x) ->

private void DoThis(int x)

• Hiding Variable Modifications
• Hiding variable - variable in subclass that has same

name as variable in the parent.
• Class Parent { .. char X = “P”; ..}

Class Child implements Parent {.. String X = “Child”; ..}
Parent myClass = new Child;
System.out.println(myClass.X); // Prints “P”

18

Encapsulation/Inheritance
• Hiding Variable Deletion

• Delete variable from child class.
• Causes references to parent instead.
• Class Child implements Parent {.. int X; .. int Y = X;} ->

Class Child implements Parent { char x; .. int Y = X;}

• Hiding Variable Insertion
• Insert a hiding variable into a subclass.
• Now, two variables of the same name exist.
• Class Child implements Parent {.. int x .. int Y = X; ..} ->

Class Child implements Parent {.. char X; .. int Y = X;}

19

Inheritance Modifications
• Overriding Method Deletion

• Delete an overriden method from a subclass.
• References call the version inherited from a parent.
• Class Child implements Parent { …

@Override public int doThis(){ .. } …
 int X = doThis(); }
->
Class Child implements Parent { …
int X = doThis(); }

20

Inheritance Modifications
• Overridden Method Calling Position Change

• Overridden methods can call the parent method.
• Moves calls to the parent version to other positions.
• @Override

public int doThis(){
 int x = super(); int y = 5; ... } ->
@Override
public int doThis(){
 int y = 5; ... int x = super(); }

21

22

Inheritance Modifications
• Super Keyword Insertion/Deletion

• Inserts or deletes the super() keyword.
• @Override

public void doSomething(){
 super(); … } ->
@Override
public void doSomething(){
 … }

Inheritance Modifications
• Overridden Method Renamed

• Rename a method in the parent class that was
overridden by the child.

• Ensures that the overridden version is always called
instead of the parent version.

• Class Parent { … public void doThis(); } Class Child
implements Parent { … @Override public void doThis(); }
->
Class Parent { … public void doThat(); } Class Child
implements Parent { … public void doThis(); }

23

Inheritance Modifications
• Explicit Parent Constructor Call Deletion

• Deletes super() call in a constructor.
• To detect, tests must trigger an incorrect initial state.
• Class Child implements Parent {

 int x;
 public Child () { super(); ... } } ->
Class Child implements Parent {
 int x;
 public Child () { ... } }

24

Polymorphism Modifications
• New Method Call with Child Class Type

• Replace a declaration with a valid child instance.
• Parent a = new Parent(); -> Parent a = new Child();

• Variable Declaration With Parent Class Type
• Change the declared type of a variable to its parent.

• Child a = new Child(); -> Parent a = new Child();
• boolean equals(Child c){..} ->

boolean equals(Parent c){..}

25

Polymorphism Modifications
• Type Cast Operator Insertion/Deletion

• Cast the type of an object reference to the parent or child of the
original type.
• p.toString() -> ((Child) p).toString()

• Or delete a type cast operator.
• ((Child) p).toString()-> p.toString()

• Cast Type Change
• Changes a cast to another valid data type.
• ((SomeChild) c).toString() ->

((OtherChild) c).toString()

26

Polymorphism Modifications
• Reference Assignment with Other Compatible Type

• Change an object reference to point to another compatible
variable.

• ->
Object obj;
String s = “hello”;
Integer i = new Integer(4);
obj=s;

Object obj;
String s = “hello”;
Integer i = new Integer(4);
obj=i;

27

Polymorphism Modifications
• Overloading allows 2+ methods to have the same

name if they have different signatures.
• Overloading Method Contents Change

• Replace the body of a method with the body of another
method with the same name.

• public void doThis (int x) { … int Z … }
public void doThis (int x, int y) { … int W … } ->
public void doThis (int x) { … int W … }
public void doThis (int x, int y) { … int Z … }

28

Polymorphism Modifications
• Overloading Method Deletion

• Deletes one of the overloading methods.
• public void doThis (int x) { … }

public void doThis (int x, int y) { … } ->
public void doThis (int x) { … }

• Argument of Overloading Method Change
• Changes order or number of arguments in an invocation,

as long as there is a version that will accept the list.
• public void doThis (int x, int y) { … } ->

public void doThis (int y, int x) { … }

29

Language-Specific Modifications
• Mutation operators can be written for a particular

language.
• Java:

• this insertion/deletion
• Static modifier insertion/deletion
• Member variable initialization deletion
• Default constructor deletion
• Getter/Setter method replacement

30

31

Let’s Take a Break

32

Mutation Testing

Mutation Testing
• Select mutation operators.
• Generate mutants by applying mutation operators.
• Execute tests against original class and mutants.

○ A mutant is killed if the test passes on the original
program and fails on the mutant.

○ A mutant not killed is considered live.

33

Mutation Testing
• Mutation operators reflect small syntactic mistakes.

• Programmers do make such mistakes!
• However, many faults are conceptual mistakes.

• Mistaken assumptions about requirements.
• Forgotten requirements.

• Is mutation testing a reasonable technique?

34

Viability of Mutation Testing
• Mutation testing is valid if seeded faults are

representative of real faults.
• Competent Programmer Hypothesis

• A faulty program differs from a correct program only by
small textual changes.

• If so, we only have to distinguish the program from all
such small variants.

• Assumption: the SUT is “close to” correct.

35

Coupling Effect
• Many faults are small syntactical errors.
• Conceptual faults often manifest as syntax errors.
• Complex faults result in larger textual differences.

• However, mutation testing is still valid if test cases for
simple issues can detect complex issues.

• Coupling Effect Hypothesis - complex faults can be
modeled as a set of small faults.

36

Coupling Effect
• A complex change is a series of

small changes.
• If one change not covered up by

others, a test that exposes it can
also detect a more complex change.

• Mutation testing effective if both competent
programmer and coupling effect hypotheses hold.

37

Judging Test Sensitivity
• Mutants are often simpler than real faults.

• Must be fairly simple to be inserted by automated tooling.

• Mutation best used to judge sensitivity of your
tests to minor changes in the code.
• If tests can distinguish mutants from the real code, then

your tests execute the code thoroughly.
• If you miss mutants, you can add new tests to detect

them and make your suite more sensitive.

38

Mutant Quality
To be used in testing, mutants must be:
• Syntactically correct (valid)

• Mutants must compile and execute.

• Plausible (useful)
• Must provide valuable information on how the system

works for testers working to improve the system.
• A mutant can be valid, but not useful.

• All or almost all tests fail.

39

Mutant Quality
Mutants might remain live if:
• They are equivalent to the original program.

• for(i=0; i < 10; i++) ->
• for(i=0; i != 10; i++)
• Identifying equivalency is NP-hard.

• Test suite is inadequate for that mutation.
• (a <= b) and (a >= b) cannot be differentiated if a==b

in the test case.

40

Mutation Coverage
Adequacy of suite can be measured as:

 (# mutants killed)
(total mutants)

• Helps ensure that the test suite is robust against
the modeled mutation types.
• Ensures that suite is sensitive to small changes in code.

41

Mutation and Structural Coverage
Can subsume structural coverage.
• Statement Coverage

• Apply statement deletion to each statement.

• Branch Coverage
• Apply constant replacement to each predicate.

• (set to true/false)
• To kill a “true” mutant, a test must execute the original

with a false value.

42

Practical Considerations
Mutation testing is expensive.
• Must run all tests against all mutants.
• Many mutants typically generated.

• One mutation operator applied per mutant.
• May be dozens - hundreds per class.

• Can randomly choose X mutants or operators.

43

Statistical Mutation Testing
• A test suite that kills some mutants may be as

effective as one that kills all mutants.
• Obtain a statistical estimate of the ability of the

suite to detect mutations.
• Randomly generate N mutants.
• Samples must be a valid statistical model of occurrence

frequencies of real faults.
• Target 100% coverage over the sample.

44

45

Mutation Testing at Google
• Very large codebase, so using all mutants or using

mutants often impractical.
• Skip lines not covered by tests.
• Skip “uninteresting” lines.

• Logging, testing, timing, loop conditions.

• Used during code reviews.
• Present undetected mutants to suggest new tests or

potential code mistakes.

Activity
1. How many mutations are possible for

Relational Operator Replacement,
Arithmetic Operator Replacement

2. Apply relational operator replacement
operation to line 4, choose input that
will show different output from original.

3. Design an equivalent mutant.
4. Design a valid, but not useful mutant.

public int[] makePositive(int[] a){

int threshold = 0;

for(int i=0; i < a.length; i++){

if(a[i] < threshold){

a[i]= -a[i];

}

}

return a;

}

46

https://bit.ly/3dmC1Zh

https://bit.ly/3dmC1Zh

Activity - Solution
• How many mutations are possible:

• Relational Operator Replacement:
• for(int i=0; i < a.length; i++){

• (>=, >, <=, ==, !=), 5 mutations
• if(a[i] < threshold){

• (>, >=, <=, ==, !=), 5 mutations

47

Activity - Solution
• How many mutations are possible:

• Arithmetic Operator Replacement
• for(int i=0; i < a.length; i++){

• Shortcut replacement, (++i, i--, --i), 3 mutations
• a[i]= -a[i];

• Unary replacement, (+a[i]), 1 mutation
• Unary to shortcut replacement, (a[i]++, ++a[i], a[i]--,

--a[i]), 4 mutations

48

Activity - Solution
• Apply the relational operator replacement operation to

statement 4:
• if(a[i] < threshold){ ->
• if(a[i] == threshold){

• Choose test input that would kill that mutant.
• a[-1,0,1]
• -1 would not become positive.

49

Activity - Solution
• Design an equivalent mutant.

• Can do so by applying the relational operator
replacement operation to statement 4:
• if(a[i] < threshold){ becomes:
• if(a[i] <= threshold){

• Since threshold=0, and -0 = 0, no test would detect.
• Does not help us test, as the fault cannot cause a failure.

50

Activity - Solution
• Design a valid, but not useful mutant.

• Compiles, but trivially fails.
• Apply relational operator replacement to statement 4:

• if(a[i] < threshold){ becomes:
• if(a[i] > threshold){
• Any positive numbers are made negative, all negative

remain negative. Almost any test would detect this.
• Many mutants are useless for detecting real faults.

51

We Have Learned
• Mutation testing inserts faults to judge test suite

sensitivity and adequacy.
• Mutation operators automatically create faulty

versions of a program.
• Operators model expected syntactic faults.

• Tests are judged according to their ability to detect
faults - useful sensitivity analysis.

52

2018-08-27 Chalmers University of Technology 53

Next Time
• Automated Test Generation
• Exercise Session: More Mutation Testing

• Will be 14:15 - 16:00 this week!

• Assignment 2 due February 28.
• Assignment 3 up soon.

