CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Lecture 9: Test Adequacy and
Structural Testing

Gregory Gay o
DIT635 - February 17, 2021 Ny

|
\

) o \‘*
742 A N T
T ./\ e R =

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Will Cover

« Test Adequacy Criteria

« Structural Testing:

« Use coverage of the program structure to judge existing
tests and create new tests.

« Common structural coverage metrics:

« Statement Coverage, Branch Coverage, Condition Coverage,
Path Coverage

#6) CHALMERS | @8} yNIVERSITY OF GOTHENBUR

Every developer must answer:
Are our tests are any good?

More importantly... Are they good
enough to stop writing new tests?

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Have We Done a Good Job?

. November 2020
What we want: T T T T T
« We've found all the faults. P m

* Impossible.

22 23 24

What we (usually) get: 5
 We compiled and it worked.

* We run out of time or budget.
* |nadequate.

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Test Adequacy Criteria

Instead - can we compromise between
the impossible and the inadequate?

« Can we measure “good testing™?

+ Test adequacy criteria “score” testing efforts by
measuring the completion of test obligations.
« Checklists of properties that must be met by test cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

(In)Adequacy Criteria

 Criteria identify inadequacies in the tests.

* |f no test reaches a statement, test suite is inadequate for
finding faults in that statement.

 |If we plant a fake fault and no test exposes it, our tests
are inadequate at detecting that fault.

» Tests may still miss faults, but maximizing criteria
shows that tests at least meet certain goals.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Adequacy Criteria

* Adequacy Criteria based on coverage of factors
correlated to finding faults (hopefully).
« Exercising elements of source code (structural testing).
« Detection of planted faults (fault-based testing)

* Widely used in industry - easy to understand, cheap
to calculate, offer a checklist.
« Enable tracking of “testing completion”
« Can be measured in Intellid, Eclipse, etc.

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Use of Criteria

« Measure adequacy of existing tests

 (Create additional tests to cover missed
obligations.

* Create tests directly

« Choose specific obligations, create
tests to cover those.

« Targets for automated test generation.

Test Inputs

Uncovered
Goals

v

New Test
Inputs

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Structural Testing

CHALMERS |) UNIVERSITY OF GOTHENBURG

Structural Testing

e The structure of the software itself int[] flipsome(int[] A, int N, int X)

is a valuable source of information. { int i=e;

« Prescribe how code elements "{“hﬂe (1<N and A[L] <X)
should be executed, and measure UL
coverage of those elements. } i++;

» |f-statements, Boolean expressions, return A;
loops, switches, paths between }

statements...

The basic idea:

You can’t find all of the
faults without exercising all
of the code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Testing - Motivation

* Requirements-based tests should execute most
code, but will rarely execute all of it.
« Helper functions.
« Error-handling code.
* Requirements missing outcomes.

» Structural testing compliments functional testing by
covering gaps in the source code.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Does Not Replace Functional

Should not be the basis for all test cases

Harder to make verification argument.
« Do not map as directly to requirements.

Does not expose missing functionality.

Useful for supplementing functional tests.
« Functional tests good at exposing conceptual faults.
« Structural tests good at exposing coding mistakes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Control and Data Flow

 We need to understand how system executes.

« (Conditional statements result in branches in execution,
jumping between blocks of code.

« Control flow: how control passes through code.
* Which code is executed, and when.

« Data flow: how data passes through code.
« How variables are used in different expressions.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Control-Flow Graphs

Directed graph representing

flow of control.

Nodes represent blocks of

sequential statements.

Edges connect nodes in the

sequence they are executed.
« Multiple edges indicate

conditional statements.

return(1)

;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Control Flow: If-then-else

if (1==x) {
y=45;

}

else {
y=23456;

}

/* continue */

NoOOup, WNER

«\} CHALMERS | (@8} UNIVERSITY OF GOTHENBURG

Loop

1 while (1<x) {
2 X--3

3}

4 /* continue */

M} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

¥z

Case

1 switch (test) {
2 case 1
3 case 2
4 case 3 : ...
5
6

}
/¥ continue */

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Basic Blocks

* Nodes are basic blocks.
« Set of sequential)
instructions with single
entry and exit point.
« Typically adjacent
statements, but one
statement might be broken
up to model control flow in
the statement.

for(int i=0; i < 10; i++){
sum += 1i;

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Control Flow Graph Example

public static String collapseNewlines(String argSt){ 1-3
char last = argStr.charAt(0); l
StringBuffer argBuf = new StringBuffer();

int cldx = 0;

char ch = argStr.charAt(cldx);

1.
2
3
4.
5. for(int cldx = @; cldx < argStr.length(); cldx++){
6
7
8
9

if (ch != “\n’ || last != “\n’){ :gxs:mength();]
argBuf.append(ch);
. last = ch;
10. {
11. }
12,
13. return argBuf.toString(); F
14. } T

8-9

cldx++;,

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Structural Coverage Criteria

 Criteria based on exercising:

« Statements (nodes of CFG)
« Branches (edges of CFG)

« Conditions

« Paths

... and many more

 Measurements used as adequacy criteria

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Statement Coverage

« Most intuitive criteria. Did we execute every
statement at least once?
« Cover each node of the CFG.

* The idea: a fault in a statement cannot be revealed
unless we execute the statement.

« Coverage = Number of Statements Covered
Number of Total Statements

{8%)) UNIVERSITY OF GOTHENBURG

Statement Coverage

int[] flipSome(int[] A, int N, int X)

{
int i=0; ‘\
while (i<N and A[i] <X)

{
if (A[i] < @)
A[i] = - A[i];
it++;
}
return A; I’eturnA

Can cover in one test: [-1], 1, 10

, True
Ali] = - A[i];
¥
> j++

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

A Note on Test Suite Size

« Coverage not correlated to test suite size.
« Coverage depends on whether obligations are met.
« Some tests might not cover new code.

 However, larger suites often find more faults.
* They exercise the code more thoroughly.

* How code is executed often more important than
whether it was executed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Suite Size

* Favor large number of targeted tests over small
number of tests that cover many statements.

 If a test targets a small number of obligations, it is easier
to tell where a fault is.

 |f a test covers a large number of obligations, we get
higher coverage, but at the cost of being able to identify
and fix faults.
The exception - cost to execute each test is high.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch Coverage

Do we have tests that take all of the control
branches at some point?
« Cover each edge of the CFG.

* Helps identify faults in decision statements.
« Coverage = Number of Branches Covered

Number of Total Branches

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Subsumption

* Criterion A subsumes another Criterion B if, for
every program P, every test suite satisfying A also
satisfies B on P.

 |If we satisfy A, there is no point in measuring B.

* Branch coverage subsumes statement coverage.

« Covering all edges in CFG requires covering all nodes in
a graph.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Subsumption

« Shouldn’t we always choose the stronger metric?

* Not always...

« Typically require more obligations.
(so, you have to come up with more tests)

* Or, at least, tougher obligations.
(making it harder to come up with the test cases).

 May end up with a large number of unsatisfiable
obligations.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Branch Coverage]

int[] flipSome(int[] A, int N, int X)
{ h
int i=0;
while (i<N and A[i] <X) r

{
if (A[i] < @)
A[i] = - A[i]; True
i++; False S — _ ATiT-
} Ali] = - Ali);
return A; return A ¥
} ®] j++

e ([-1], 1, 10) leaves one edge uncovered.
e ([-1, 1], 2, 10) achieves Branch Coverage.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Decisions and Conditions

* A decision is a complex Boolean expression.
« Often cause control-flow branching:
e if ((a && b) |] !c)
« But not always:

e Boolean x = ((a && b)) || 'c);

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Decisions and Conditions

* A decision is a complex Boolean expression.

« Made up of conditions
« Connected with Boolean operators (and, or, xor, not):
 Boolean variables: Boolean b = false;
« Subexpressions that evaluate to true/false involving (<, >, <=, >=,
==,and !=): Boolean x = (y < 12);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Decision Coverage

* Branch Coverage deals with a subset of decisions.

« Branching decisions that decide how control is routed
through the program.

* Decision coverage requires that all boolean
decisions evaluate to true and false.

* Coverage = Number of Decisions Covered
Number of Total Decisions

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Basic Condition Coverage

Several coverage metrics examine the individual
conditions that make up a decision.
|dentify faults in decision statements.

(@a==1 || b == -1) insteadof (a == -1 || b == -1)

* Most basic form: make each condition T/F.

Coverage = Number of Truth Values for All Conditions
2x Number of Conditions

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Basic Condition Coverage

« Make each condition both True and False

Test Case A B
(A and B) | True False
2 False True

* Does not require hitting both branches.

« Does not subsume branch coverage.
* |In this case, false branch is taken for both tests

) UNIVERSITY OF GOTHENBURG

int[] flipSome(int[] A, int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[i] < @)
A[i] = - A[i];
i++; False S — _ ATiT-
} Ali] = - All;
return A; return A L
} > j++

o ([-1,1],2,10)

O Negative value in array
o Positive value (but < X)

e ([11],1,10)
o Positive, but > X
e Both eventually cause i < N to be false.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Compound Condition Coverage

« Evaluate every combination of the conditions

Test Case A B
1 True True
(A and B) 2 True False
3 False True
4 False False

« Subsumes branch coverage.
* All outcomes are now tried.

« Can be expensive in practice.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Compound Condition Coverage

 Requires many test cases.

Test Case B C D
1 True True True True
2 True True True False
3 True True False True
(A a n d 4 True True False False
5 True False True True
6 True False True False
(B a n d 7 True False False True
8 True False False False
9 False True True True
(C a n d 10 False True True False
11 False True False True
12 False True False False
D 13 False False True True
14 False False True False
15 False False False True
16 False False False False

48) CHALMERS |

Short-Circuit Evaluation

* In many languages, if the first condition determines
the result of the entire decision, then fewer tests are

required.
If A is false, B is never evaluated.

(A and B)

(&%) UNIVERSITY OF GOTHENBURG

Test Case A B
1 True True
2 True False
3 False

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Modified Condition/Decision Coverage(MC/DC)

* Requires:

« Each condition evaluates to true/false

« Each decision evaluates to true/false

« Each condition shown to independently affect outcome
of each decision it appears in.

Test Case A B (A and B)
1 rue True
2 False
3 rue False
4 —Falge Ealse False

CHALMERS |) UNIVERSITY OF GOTHENBURG

Activity

Draw the CFG and write tests that provide statement, branch,
and basic condition coverage over the following code:

public int search(String[] A, String what){
int index = 0;
if ((A.length == 1) && (A[@] == what)){
return 0;
} else if (A.length == 0){
return -1;
} else if (A.length > 1){
while(index < A.length){
if (A[index] == what){

return index;
} else
index++;
}
}
}

return -1;

https://bit.ly/3rL8s7t

CHALMERS | NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Activity - Control Flow Graph

index=0

False

(A.length ==1)
&& (A[0] = what)

return -1;

True False

return 0; return -1;

index++;

True return index;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity - Possible Solution

index=0

\\\ ‘A "~ False
“E!"\ _.‘,51 V = ‘ _eturn -1;

True True {ik
I I /
v

return 0; return -1; True

1: A[“Bob”, “Jane”], 2, “Jane”
2: A[“Bob”, “Jane”], 2, “Spot”
3: A[], 0, “Bob”

4. A[“Bob’], 1, “Bob”

5. A[“Bob”], 1, “Spot”

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Loop Boundary Coverage

* Focus on problems related to loops.

« Cover scenarios representative of how loops might be
executed.

* For each loop, write tests that:
« Skip the loop entirely.
« Take exactly one pass through the loop.
» Take two or more passes through the loop.

{8%)) UNIVERSITY OF GOTHENBURG

Nested Loops

« Often, loops are nested within other loops.
« For each level, execute 0, 1, 2+ times

* |n addition:

« Test innermost loop first with outer loops executed
minimum number of times.

« Move one loops out, keep the inner loop at “typical”
iteration numbers, and test this layer as you did the
previous layer.

« Continue until the outermost loop tested.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Concatenated Loops

* One loop executes. Next line of code starts a new
loop. These are generally independent.

v

- If not, follow a similar strategy to nested loops. g

« Start with bottom loop, hold higher loops at minimal iteration 5
§

numbers.

« Work up towards the top, holding lower loops at “typical”
iteration numbers.

/
< {
B\
/N
/ //AA.\

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Why These Loop Strategies?

 If proving correctness, we establish preconditions,
postconditions, and invariants that are true on each

execution of loop.
* The loop executes zero times when the postconditions
are true in advance.

* The loop invariant is true on loop entry (one), then each
loop iteration maintains the invariant (many).
« (invariant and !(loop condition) implies postconditions are met)

* Loop testing strategies echo these cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Activity: Binary Search [afpsilbitiviSiesa

For the binary-search code:

1. Draw the control-flow graph for the method.
2. Develop a test suite that achieves loop boundary
coverage (executes while loop 0, 1, 2+ times.

https://bit.ly/3rL8s7t

{81)) UNIVERSITY OF GOTHENBURG

Activity: Binary Search

5 Tests that execute the loop:

e Otimes key=1,T=[1]

e 1time key=2,T=[1, 2]

o 2+times key=3,T=][1,2 3]

21

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

Sometimes, no test can satisfy an obligation.

* Impossible combinations of conditions.

* Unreachable statements as part of defensive
programming.
« Error-handling code for conditions that can’t occur.

* Dead code in legacy applications.

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

« Stronger criteria call for potentially infeasible
combinations of elements.

(a > 0 && a < 10)

 |tis not possible for both conditions to be false.
* Ais negative and greater than 10

* Loop boundary coverage - loop can’t be skipped.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Infeasibility Problem

« Adequacy “scores” based on coverage.
* 95% branch coverage, 80% MC/DC coverage, etc.
« Stop once a threshold is reached.

« Unsatisfactory solution - elements are not equally
important for fault-finding.

« Manual justification for omitting each impossible
test obligation.
* Helps refine code and testing efforts.
* ... but very time-consuming.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Test adequacy metrics let us "measure” how good

our testing efforts are.
* Prescribe test obligations that can be used to remove
inadequacies from test suites.

* Code structure is used in many adequacy criteria.

* Many different criteria, based on:
« Statements, branches, conditions, loops, etc.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

* Next class: More examples of structural coverage
and data-flow criteria
« Optional Reading - Pezze and Young, Chapters 6 and 13

* Friday Exercise Session: Structural Coverage
« Using Meeting Planner code

 Homework - Assignment 2 due Feb 28

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

