
Exercise Session 3:
Unit Testing

Gregory Gay
DIT635 - February 11, 2022

Enter… The Planning System

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book
rooms or employees for meetings.

• System to manage schedules and
meetings.

2

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

The Planning System
Offers the following high-level features:
1. Booking a meeting
2. Booking vacation time
3. Checking availability for a room
4. Checking availability for a person
5. Printing the agenda for a room
6. Printing the agenda for a person

3

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

Develop a Test Plan
In groups, come up with a test plan for this system.
• Given the features and the code documentation,

plan unit tests to ensure that these features can be
performed without error.

4

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

Food for Thought
• Try running the code!

• Perform exploratory testing to test it at the system level.

• Think about normal and erroneous inputs/actions.
• How many things can go wrong?
• You will probably be able to add a normal meeting, but

can you add a meeting for February 35th?
• Try it out - you have the code.

5

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

Develop Unit Tests

6

• If a test is supposed to cause an exception to be
thrown, make sure you check for that exception.

• Make sure that expected output is detailed enough
to ensure that - if something is supposed to fail -
that it fails for the correct reasons.
• Use proper assertions.

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

Can you expose the faults?

7

Can you expose the faults?
1: getMeeting and removeMeeting perform no error
checking on dates.

public Meeting getMeeting(int month, int day, int index){

return occupied.get(month).get(day).get(index);

}

public void removeMeeting(int month, int day, int index){

occupied.get(month).get(day).remove(index);

}

8

Can you expose the faults?
2: Calendar has a 13th month.
public Calendar(){

occupied = new ArrayList<ArrayList<ArrayList<Meeting>>>();

for(int i=0;i<=13;i++){

// Initialize month

occupied.add(new ArrayList<ArrayList<Meeting>>());

for(int j=0;j<32;j++){

// Initialize days

occupied.get(i).add(new ArrayList<Meeting>());

}

}

}
9

Can you expose the faults?
3: November has 30 days.
Oh - and we just added a meeting to a day with a date that
does not match that date.

occupied.get(11).get(30).add(new Meeting(11,31,"Day does not

exist"));

10

Can you expose the faults?
4: Used a >= in checking for illegal times. December
no longer exists.

if(mMonth < 1 || mMonth >= 12){

throw new TimeConflictException("Month does not

exist.");

}

11

Can you expose the faults?
5: We should be able to start and end a meeting in the
same hour.

if(mStart >= mEnd){

throw new TimeConflictException("Meeting starts before it

ends.");

}

12

What Other Faults Can You Find?

13

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

14

Current Status

I and the TAs are available to answer questions.
• Afonso Fontes
• Sandra Eisenberg
• Chaneli Silva

Code: https://bit.ly/3B39YYI
Activity: https://bit.ly/32XM308

https://bit.ly/3B39YYI
https://bit.ly/32XM308

