
Exercise 5: Mutation Testing

Gregory Gay
DIT635 - February 25, 2022

2

Finish Lecture 11 Activity First!

The Planning System Returns

• Everybody likes meetings.
• Not true - but we need to book them.

• We don’t want to double-book
rooms or employees for meetings.

• System to manage schedules and
meetings.

3

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

4

Mutate the Meeting Planner
• Create at least four mutants for classes from the

MeetingPlanner system.
• Try to create at least one from each category:

• invalid (does not compile)
• valid-but-not-useful (fails for almost any test case)
• useful (requires specific input or input ranges to detect)
• equivalent (no test will ever fail)

• Use different operators for each mutant
• 1+ from each category in handout.

• Try mutating different parts of the code.
Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

5

Assess Your Test Cases
• Run the tests you created in previous exercises. Do

they detect the non-equivalent mutants?
• (Pass on original code, fail for mutated code)
• If not, create new test cases that will detect them.
• If equivalent, make sure you understand why the mutant

will never be detected.

• If you finish quickly, try this for the CoffeeMaker.
• (part of Assignment 3)

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

6

Example 1
• Valid, but not useful: constant-for-constant replacement

public boolean isBusy(int month, int day, int start, int end) throws TimeConflictException{

boolean busy = false; BECOMES

 boolean busy = true;

checkTimes(month,day,start,end);

for(Meeting toCheck : occupied.get(month).get(day)){

if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){

busy=true;

}else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){

busy=true;

}

}

return busy;

} Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

7

@Test

public void testIsBusy_NotBusy() {

// Meeting with no conflict with our dates.

Meeting noConflict = new Meeting(1,13,1,3);

Calendar calendar = new Calendar();

// Add meeting to calendar

try {

calendar.addMeeting(noConflict);

 // Enter a time that has no conflict.

boolean result = calendar.isBusy(1, 13, 14, 16);

assertFalse("Should cause no conflict", result);

} catch(TimeConflictException e) {

fail("Should not throw exception: " + e.getMessage());

}

}

ANY test
where the
person is not
busy will fail
for this
mutant!

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

8

Example 2
• Useful: Statement Deletion

public boolean isBusy(int month, int day, int start, int end) throws TimeConflictException{

boolean busy = false;

checkTimes(month,day,start,end);

for(Meeting toCheck : occupied.get(month).get(day)){

if(start >= toCheck.getStartTime() && start <= toCheck.getEndTime()){

busy=true;

}else if(end >= toCheck.getStartTime() && end <= toCheck.getEndTime()){

busy=true;

}

}

return busy;

}

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

9

Example 2
• Test passes in invalid date and expects a

TimeConflictException to be thrown.
@Test

public void testIsBusy_invalid_date() {

Calendar calendar = new Calendar();

Throwable exception = assertThrows(

TimeConflictException.class, () -> {

boolean result = calendar.isBusy(14, 13, 14, 16);

 });

}

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

10

Current Status

I and the TAs are available to answer questions.
• Afonso Fontes
• Sandra Eisenberg
• Chaneli Silva

Code: https://bit.ly/35X57wt
Activity: https://bit.ly/3JzSPst

https://bit.ly/35X57wt
https://bit.ly/3JzSPst

