
Lecture 1: Software Quality,
Verification, and Validation

Gregory Gay
DIT635 - January 19, 2022

2

When is software ready for release?

Our Society Depends on Software
This is software: So is this:

 Also, this:

 3

Flawed Software Will Hurt Profits
“Bugs cost the U.S. economy $60 billion annually…
and testing would relieve one-third of the cost.”

- NIST

“Finding and fixing a software problem after delivery is
often 100 times more expensive than finding and fixing
it before.”

- Barry Boehm (TRW Emeritus Professor, USC)
4

Flawed Software Will Be Exploited

5

Flawed Software Will Hurt People
In 2010, software faults were responsible
for 26% of medical device recalls.

“There is a reasonable probability that use
of these products will cause serious
adverse health consequences or death.”
- US Food and Drug Administration

6

This Course
• What is “good” software?

• Determined through quality metrics (dependability,
performance, scalability, availability, security, ...)

• The key to good software?
• Verification and Validation

• We will explore testing and analysis activities of
the V&V process.

7

2018-08-27 Chalmers University of Technology 8

Today’s Goals
Introduce The Class
● AKA: What the heck is going on?
● Go over course PM
● Clarify expectations
● Assignments/grading
● Answer any questions
● Introduce the idea of “quality”
● Cover the basics of verification and validation

Contact Details
• Instructor: Greg Gay (Dr, Professor, $#*%)

• E-mail: ggay@chalmers.se

• Website:
• https://canvas.gu.se/courses/51646

• Pay attention to the schedule/announcements
• https://greg4cr.github.io/courses/spring22dit635

• Backup of Canvas page/course materials.
• May be out of date, but good if Canvas isn’t working.

9

mailto:ggay@chalmers.se
https://canvas.gu.se/courses/51646
https://greg4cr.github.io/courses/spring22dit635

10

Teaching Team
• Teaching Assistants

• Afonso Fontes (afonso.fontes@chalmers.se)
• Sandra Smoler Eisenberg (gussmosa@student.gu.se)

• Student Representatives
• You?
• E-mail ggay@chalmers.se if you want to volunteer.

mailto:afonso.fontes@chalmers.se
mailto:gussmosa@student.gu.se
mailto:ggay@chalmers.se

Communication and Feedback
• Post questions to Canvas discussion forum

(preferred) or e-mail.
• Send me private or sensitive questions!
• Send feedback to course reps or me.
• Contact student_office.cse@chalmers.se for

questions related to registration, sign-up, LADOK.

11

mailto:student_office.cse@chalmers.se

Desired Course Outcomes
Knowledge and understanding
● Explain quality assurance models in software engineering and the contents of

quality assurance plans

● Describe the distinction between verification and validation

● Name and describe the basic concepts on testing, as well as different testing
techniques and approaches

● Describe connection between development phases and kinds of testing

● Exemplify and describe a number of different test methods, and be able to use them
in practical situations

● Exemplify and describe tools used for testing software, and be able to use them and
interpret their output

12

13

Desired Course Outcomes
Competence and skills
● Define metrics required for monitoring the quality of projects, products and

processes in software engineering
● Construct appropriate and meaningful test cases, and interpret and explain

(to stakeholders) the results of the application of such test cases (using
appropriate tools) to practical examples

● Develop effective tests for systems at differing levels of granularity (e.g.,
unit and system level)

● Plan and produce appropriate documentation for testing
● Apply different testing techniques on realistic examples

14

Desired Course Outcomes
Judgement and approach
● Identify emerging techniques and methods for

quality management using relevant sources
● Identify and hypothesize about sources of program

failures, and reflect on how to better verify the
correctness of such programs

Lecture Plan (approximate)

15

Lectures 2-3

Lectures 4 - 8, 12

Lectures 9 - 11 Lectures 13 - 14

16

Changes from Last Time
• Small changes to lecture contents to fix typos,

update materials.
• Adjustments to homework assignments based on

feedback.

Course Literature
• Software Testing and Analysis,

Mauro Pezze and Michal Young.
• Free from

https://ix.cs.uoregon.edu/~michal/b
ook/free.php

• Gives more information on many of
the topics covered

• Others posted to Canvas

17

https://ix.cs.uoregon.edu/~michal/book/free.php
https://ix.cs.uoregon.edu/~michal/book/free.php

Prerequisite Knowledge
• You need to be proficient in Java

• (ideally, some knowledge of C/C++)

• Basic understanding of build systems and
continuous integration
• We will go over specifics later.

• Basic understanding of logic and sets.
• Formal verification based on logical arguments.

18

Course Design
 Lectures (Wed 8:15-10:00, Friday 10:15-12:00)

Exercise Sessions
(Friday, 13:15-15:00) Group Assignments

19

20

Online Lectures
• For now:

All lectures and exercise sessions on Zoom.
• Will switch to hybrid if covid situation improves.

• Lectures will recorded, exercise sessions not.
• In lectures: use real names, mute/no camera, ask

questions via chat.
• (exercise sessions are more interactive - feel free to use

camera/mic there if you want)

21

Examination Form
Sub-Courses
• Written examination (Skriftlig tentamen), 4.5 higher

education credits
• Grading scale: Pass with Distinction (VG), Pass (G) and

Fail (U)
• Assignments (Inlämningsuppgifter), 3 higher

education credits
• Grading scale: Pass (G) and Fail (U)

22

Assessment
• Individual hall exam at end of course
• Written assignments in teams of three.

• You may choose your own team. See Assignment 0 on
Canvas. Due next Tuesday.

• Three written assignments.
• Equally weighted.
• Final grade is average of three assignment grades.

23

Assessment
• Self and peer-evaluation due with each assignment

• May be used to adjust individual assignment grades.
• AKA: don’t slack off!

• Late assignments, -20% per day, 0% after two days
• If final assignment average is failing, all three

assignments must be redone/resubmitted.

24

Grading Scale
• Assignments: Pass (G), Fail (U)
• Exam: Pass w/ Distinction (VG), Pass (G), Fail (U)

Expected Workload
• This class can be time consuming.

• Understanding the material takes time.
• Project work requires team coordination.

• Do not underestimate the project work.
• Good engineering is hard.
• Planning and scheduling your time is essential.
• Do NOT delay getting started.
• Appoint a team leader (and rotate the role)

25

Other Policies
Integrity and Ethics:
Homework and programs you submit for this class must be entirely your own. If
this is not absolutely clear, then contact me. Any other collaboration of any type
on any assignment is not permitted. It is your responsibility to protect your work
from unauthorized access. Violation = failing grade and reporting.

Classroom Climate:
Arrive on time, don’t talk during lecture, don’t use chat unless asking or
answering questions. Disruptive students will be warned and dismissed.

26

Other Policies
Diversity
Students in this class are expected to work with all other students, regardless
of gender, race, sexuality, religion, etc. Zero-tolerance policy for discrimination.

Special Needs
We will provide reasonable accommodations to students that have disabilities.
Contact teaching team early to discuss individual needs.

27

28

Let’s take a break!

29

When is software ready for release?

30

The short (and not so simple) answers...

• We release when we can’t find any bugs…
• We release when we have finished testing…
• We release when quality is high...

31

Software Quality
• We all want high-quality software.

• We don’t all agree on the definition of quality.
• Quality encompasses both what the system does

and how it does it.
• How quickly it runs.
• How secure it is.
• How available its services are.
• How easily it scales to more users.

• Quality is hard to measure and assess objectively.

32

Quality Attributes
• Describe desired properties of the system.
• Developers prioritize attributes and design system

that meets chosen thresholds.
• Most relevant for this course: dependability

• Ability to consistently offer correct functionality, even
under unforeseen or unsafe conditions.

Quality Attributes
• Performance

• Ability to meet timing requirements. When events occur,
the system must respond quickly.

• Security
• Ability to protect information from unauthorized access

while providing service to authorized users.
• Scalability

• Ability to “grow” the system to process more concurrent
requests.

33

Quality Attributes
• Availability

• Ability to carry out a task when needed, to minimize
“downtime”, and to recover from failures.

• Modifiability
• Ability to enhance software by fixing issues, adding

features, and adapting to new environments.
• Testability

• Ability to easily identify faults in a system.
• Probability that a fault will result in a visible failure.

34

Quality Attributes
• Interoperability

• Ability to exchange information with and provide
functionality to other systems.

• Usability
• Ability to enable users to perform tasks and provide

support to users.
• How easy it is to use the system, learn features, adapt to

meet user needs, and increase confidence and
satisfaction in usage.

35

36

Other Quality Attributes
● Resilience
● Supportability
● Portability
● Development Efficiency
● Time to Deliver
● Tool Support
● Geographic Distribution

37

Quality Attributes
• These qualities often conflict.

• Fewer subsystems improves performance, but hurts
modifiability.

• Redundant data helps availability, but lessens security.
• Localizing safety-critical features ensures safety, but

degrades performance.

• Important to decide what is important, and set a
threshold on when it is “good enough”.

When is Software Ready for Release?
Software is ready for release when you can argue
that it is dependable.
• Correct, reliable, safe, and robust.
• Shown through Verification and Validation.

38

Verification and Validation
Activities that must be performed to consider the
software “done.”
• Verification: The process of proving that the

software conforms to its specified functional and
non-functional requirements.

• Validation: The process of proving that the
software meets the customer’s true requirements,
needs, and expectations.

39

Verification and Validation
Barry Boehm, inventor of the term “software
engineering”, describes them as:

• Verification:
• “Are we building the product right?”

• Validation:
• “Are we building the right product?”

40

Verification
• Is the implementation consistent with its

specification?
• Does the software work under conditions we set?
• (usually based on requirements)

• Verification is an experiment.
• Perform trials, evaluate results, gather evidence.

41

Verification
• Is a implementation consistent with a specification?
• “Specification” and “implementation” are roles.

• Usually source code and requirement specification.
• But also…

• Detailed design and high-level architecture.
• Design and requirements.
• Test cases and requirements.
• Source code and user manuals.

42

Software Testing
• An investigation into system quality.
• Based on sequences of stimuli and

observations.
• Stimuli that the system must react to.
• Observations of system reactions.
• Verdicts on correctness.

43

SUT

Test Input

Output

Test Oracle
(Expected Output)

Verdict (Pass/Fail)

Validation
• Does the product work in the real world?

• Does the software fulfill the users’ actual needs?

• Not the same as conforming to a specification.
• If we specify two buttons and implement all behaviors

related to those buttons, we can achieve verification.
• If the user expected a third button, we have not

achieved validation.

44

Verification and Validation
• Verification

• Does the software work as intended?
• Shows that software is dependable.

• Validation
• Does the software meet the needs of your users?
• Shows that software is useful.
• This is much harder.

45

Verification and Validation
• Both are important.

• A well-verified system might not meet the user’s needs.
• A system can’t meet the user’s needs unless it is

well-constructed.

• This class largely focuses on verification.
• Testing is the primary activity of verification.

46

Required Level of V&V
• Depends on:

• Software Purpose: The more critical, the more important
that it is reliable.

• User Expectations: Users may tolerate bugs because
benefits outweigh cost of failure recovery.

• Marketing Environment: Competing products - features
and cost - and speed to market.

47

Basic Questions
1. When do verification and validation start and end?
2. How do we obtain acceptable quality at an

acceptable cost?
3. How can we assess readiness for release?
4. How can we control quality of successive releases?
5. How can the development process be improved to

make verification more effective?

48

When Does V&V Start?
• V&V can start as soon as the project starts.

• Feasibility studies must consider quality assessment.
• Requirements can be used to derive test cases.
• Design can be verified against requirements.
• Code can be verified against design and requirements.
• Feedback can be sought from stakeholders at any time.

49

Static Verification
• Analysis of system artifacts to

discover problems.
• Proofs: Posing hypotheses and

making arguments using
specifications, models, etc.

• Inspections: Manual “sanity check”
on artifacts (e.g., source code),
searching for issues.

50

Advantages of Static Verification
• One error can hide other errors. Inspections not

impacted by program interactions.
• Incomplete systems can be inspected without

special code to run partial system.
• Inspection can assess quality attributes such as

maintainability, portability, code style, program
inefficiencies, etc.

51

Dynamic Verification
• Exercising and observing the system to argue that it

meets the requirements.
• Testing: Formulating sets of input to demonstrate

requirement satisfaction or find faults.
• Fuzzing: Generating semi-random input to locate

crashes and other anomalies.
• Taint Analysis: Monitoring how faults spread by

corrupting system variables.

52

Advantages of Dynamic Verification
• Discovers problems from runtime interaction, timing

problems, or performance issues.
• Often cheaper than static verification.

• Easier to automate.
• However, cannot prove that properties are met

• Cannot try all possible executions.

53

The Trade-Off Game
Software engineering is the process of designing,
constructing and maintaining the best software
possible given the available resources.

Trade off between what we want, what we need, and
what we've got.

“Better, faster, or cheaper - pick any two”

54

Perfect Verification
• Verification is an instance of the halting problem.

• There is at least one program for which any technique
cannot obtain an answer in finite time.

• Testing - cannot exhaustively try all inputs.
• Must accept some degree of inaccuracy.

55

Verification Trade-Offs
We are interested in proving that a
program demonstrates property X
• Pessimistic Inaccuracy - not guaranteed

to program even if the it possesses X.
• Optimistic Inaccuracy - may accept

program that does not possess X.
• Property Complexity - if X is too difficult

to check, substitute simpler property Y.

56

How Can We Assess Readiness?
• Finding all faults is nearly impossible.
• Instead, decide when to stop V&V.
• Need to establish criteria for acceptance.

• How good is “good enough”?

• Measure dependability and other quality attributes
and set threshold to meet.

57

Product Readiness
• Put it in the hands of human users.
• Alpha/Beta Testing

• Small group of users using the product, reporting
feedback and failures.

• Use this to judge product readiness.
• Make use of dependability metrics for quantitative

judgement (metric > threshold).
• Make use of surveys as a qualitative judgement.

58

Ensuring Quality of Successive Releases
• V&V do not end with the release of the software.

• Software evolves - new features, environmental
adaptations, bug fixes.

• Need to test code, retest old code, track changes.
• When code changes, rerun tests to ensure tested

elements still works.
• Retain tests that exposed faults to ensure they do not

return.

59

Improving the Development Process
• Try to learn from your mistakes in the next project.

• Collect data during development.
• Fault information, bug reports, project metrics (complexity, #

classes, # lines of code, test coverage, etc.).
• Classify faults into categories.
• Look for common mistakes.
• Learn how to avoid such mistakes.
• Share information within your organization.

60

61

We Have Learned
• Quality attributes describe desired properties of the

system under development.
• Dependability, scalability, performance, availability,

security, maintainability, testability, ...

• Developers must prioritize quality attributes and
design a system that meets chosen thresholds.

• Quality is often subjective. Choose a definition, and
offer objective thresholds.

We Have Learned
• Software should be dependable and useful before it

is released into the world.
• Verification is the process of demonstrating that an

implementation meets its specification.
• This is the primary means of making software

dependable (and demonstrating dependability).
• Testing is most common form of verification.

62

Next Time
• Measuring and assessing quality.

• Pezze & Young - Chapter 4
• Other reading on Canvas

• Plan your team selection.
• The earlier, the better! Due January 25, 11:59 PM.
• See Assignment 0 on Canvas

63

