
Lecture 16: Exam Review

Gregory Gay
DIT635 - March 11, 2022

The Impending Exam
• Thursday, March 17, 8:30 - 12:30
• Practice exam on Canvas.

• Let’s go over it!
• Try solving the exam without using the sample solutions.

Compare your answers.
• Ask questions about any course content!

2

2018-08-27 Chalmers University of Technology 3

Topics
• Quality Attributes and

Scenarios
• System Testing

• Category Partition
Method

• Combinatorial
Interaction Testing

• Exploratory Testing
• Unit Testing

• Structural Coverage
Criteria
• Control-Flow
• Data-Flow

• Mutation Testing
• Automated Test

Generation
• Model-Based Testing
• Finite State

Verification

4

Practice Exam

Question 1
1. A program may be correct, yet not reliable.

a. True
b. False

2. If a system is on an average down for a total 30 minutes
during any 24-hour period:
a. Its availability is about 98% (approximated to the nearest integer)
b. Its reliability is about 98% (approximated to the nearest integer)
c. Its mean time between failures is 23.5 hours
d. Its maintenance window is 30 minutes

5

Question 1
1. A program may be correct, yet not reliable.

a. True
b. False

2. If a system is on an average down for a total 30 minutes
during any 24-hour period:
a. Its availability is about 98% (approximated to the nearest integer)
b. Its reliability is about 98% (approximated to the nearest integer)
c. Its mean time between failures is 23.5 hours
d. Its maintenance window is 30 minutes

6

Question 1
3. In general, we need either mock objects or drivers but not

both, when testing a module.
a. True
b. False

4. If a temporal property holds for a finite-state model of a
system, it holds for any implementation that conforms to the
model.
a. True
b. False

7

Question 1
3. In general, we need either mock objects or drivers but not

both, when testing a module.
a. True
b. False

4. If a temporal property holds for a finite-state model of a
system, it holds for any implementation that conforms to the
model.
a. True
b. False

8

Question 1
5. A test suite that meets a stronger coverage criterion will find

any defects that are detected by any test suite that meets
only a weaker coverage criterion

• True
• False

6. A test suite that is known to achieve Modified
Condition/Decision Coverage (MC/DC) for a given program,
when executed, will exercise, at least once:

• Every statement in the program.
• Every branch in the program.
• Every combination of condition values in every decision.
• Every path in the program.

9

Question 1
5. A test suite that meets a stronger coverage criterion will find

any defects that are detected by any test suite that meets
only a weaker coverage criterion

• True
• False

6. A test suite that is known to achieve Modified
Condition/Decision Coverage (MC/DC) for a given program,
when executed, will exercise, at least once:

• Every statement in the program.
• Every branch in the program.
• Every combination of condition values in every decision.
• Every path in the program.

10

Question 1
7. Category-Partition Testing technique requires

identification of:
• Testing Choices
• Representative Values
• Def-Use pairs
• Pairwise combinations

8. Validation activities can only be performed once the complete system has
been built.

• True or False
9. Statement coverage criterion never requires as many test cases to satisfy

as branch coverage criterion.
• True or False

11

Question 1
7. Category-Partition Testing technique requires

identification of:
• Parameter characteristics
• Representative values
• Def-Use pairs
• Pairwise combinations

8. Validation activities can only be performed once the complete system has
been built.

• True or False
9. Statement coverage criterion never requires as many test cases to satisfy

as branch coverage criterion.
• True or False

12

Question 1
10. Requirement specifications are not needed for generating inputs to satisfy

structural coverage of program code.
• True or False

11. A system that fails to meet its user’s needs may still be:
• Correct with respect to its specification.
• Safe to operate.
• Robust in the presence of exceptional conditions.
• Considered to have passed verification.

13

Question 1
10. Requirement specifications are not needed for generating inputs to satisfy

structural coverage of program code.
• True or False

11. A system that fails to meet its user’s needs may still be:
• Correct with respect to its specification.
• Safe to operate.
• Robust in the presence of exceptional conditions.
• Considered to have passed verification.

14

Question 2
Consider the software for air-traffic control at an
airport.

Identify one performance, one availability, and one
security requirement that you think would be
necessary for this software and develop a quality
scenario for each.

15

Question 2
Performance Requirement: Under normal load (< 500 aircraft), displayed aircraft positions
shall be updated on a user’s display at least every 50 ms.

Performance Scenario:

• Overview: Check system responsiveness for displaying aircraft positions

• System state: Deployment environment working correctly with less than 500 tracked
aircraft.

• Environment state: All aircraft tracking hardware is functional.

• External stimulus: 50 Hz update of ATC system.

• System response: radar/sensor values are computed, new position is displayed to the air
traffic controller with maximum error of 5 meters.

• Response measure: Fusion and display process completes in less than 45 ms 95% of the
time, and in less than 50 ms 99% of the time. There is an absolute deadline of 55 ms.

16

Question 2
Availability Requirement: The system shall be able to tolerate the failure of any single server
host, graphics card, display or network link.

Availability Scenario:

• Overview: One of the monitor display cards fails during transmission of a screen refresh.

• System State: System is working correctly under normal load with no failures.

• Environment state: No relevant environment factors.

• External stimulus: display card fails

• Required system response: failure detected within 10 ms and display information routed
through redundant graphics card with no user-discernable change to display. Graphics
card failure will be displayed as error message at bottom right hand of ATC display.

• Response measure: no loss in continuity of visual display and failover with visual warning
completes within 1 s.

17

Question 2
Security Requirement: The system shall maintain audit logs of any logins to the ATC
database, containing sufficient information to identify an attacker.
Security Scenario:

• Overview: A malicious agent gains access to the flight records database in the ATC.

• System state: The system is working correctly under normal load.

• Environment state: No relevant environmental factors.

• External stimulus: A malicious agent obtains access to the flight records database
through password cracking, and downloads flight plans for commercial aircraft.

• Required system response: An audit log will be updated with login and download
information to support future prosecution of malicious users.

• Response measure: The system audit contains time, IP address, and related
information for the download. This information will assist in identifying and analyzing
possible attacks.

18

Question 3
You are building a web store that you feel will unseat Amazon as the king of
online shops. Your marketing department has come back with figures stating
that - to accomplish your goal - your shop will need an availability of at least
99%, a probability of failure on demand of less than 0.1, and a rate of fault
occurrence of less than 2 failures per 8-hour work period.

You have recently finished a testing period of one week (seven full 24-hour
days). During this time, 972 requests were served to the page. The product
failed a total of 64 times. 37 of those resulted in a system crash, while the
remaining 27 resulted in incorrect shopping cart totals. When the system
crashes, it takes 2 minutes to restart it.

19

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

20

● What is the rate of fault
occurrence?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

21

● What is the rate of fault
occurrence?

● 64/168 hours =
0.38/hour = 3.04/8 hour
work day

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

22

● What is the probability of
failure on demand?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

23

● What is the probability of
failure on demand?

● 64/972 = 0.066

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

24

● What is the availability?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

25

● What is the availability?
● It was down for (37*2)

= 74 minutes out of
168 hours = 74/10089
minutes = 0.7% of the
time. Availability =
99.3%

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

26

● Is the product ready to
ship? If not, why not?

Question 3
Want: availability of at least 99%, a
probability of failure on demand of
less than 0.1, and a rate of fault
occurrence of less than 2 failures per
8-hour work period.

Currently: 972 requests. The product
failed a total of 64 times (37 crashes,
27 incorrect computations). It takes 2
minutes to restart.

27

● Is the product ready to
ship? If not, why not?

● No. Availability,
POFOD are good.
ROCOF is too low.
How would you
improve it?

Question 4
• The airport connection check is part of a travel

reservation system. It checks the validity of a single
connection between two flights in an itinerary.
• If the arrival airport of Flight A differs from the departure

airport of Flight B, the connection is invalid.
• If the departure time of Flight B is too close to the arrival

time of Flight A, the connection is invalid.
• If an airport doesn’t exist, the connection is invalid…

28

Question 4
validConnection(Flight FlightA, Flight FlightB)
 returns ValidityCode

A Flight is a data structure consisting of:
● A unique identifying flight code (string, three characters followed by

four numbers).
● The originating airport code (three character string).
● The scheduled departure time (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time (in universal time).

29

Question 4
There is also a flight database, where each record contains:
● Three-letter airport code (three character string).
● Airport country (two character string).
● Minimum connection times (integer, minimum number of minutes that must

be allowed for flight connections).

ValidityCode is an integer with value:
• 0 for OK
• 1 for invalid airport code
• 2 for a connection that is too short
• 3 for flights that do not connect (arrivingFlight does not land in the same

location as departingFlight)
• 4 for any other errors (malformed input or any other unexpected errors).

30

Parameter: Arriving flight

Flight code:
• malformed
• not in database
• valid

Originating airport code:
• malformed
• not in database
• valid city

Scheduled departure time:
• syntactically malformed
• out of legal range
• legal

Destination airport (transfer
airport):

• malformed
• not in database
• valid city

Scheduled arrival time (tA):
• syntactically malformed
• out of legal range
• legal

Parameter: Departing flight

Flight code:
● malformed
● not in database
● valid

Originating airport code:
● malformed
● not in database
● differs from transfer airport
● same as transfer airport

Scheduled departure time:
● syntactically malformed
● out of legal range
● before arriving flight time (tA)
● between tA and tA + minimum

connection time (CT)
● equal to tA + CT
● greater than tA + CT

Destination airport code:
● malformed
● not in database
● valid city

Scheduled arrival time:
● malformed
● out of legal range
● legal

Parameter: Database record

This parameter refers to the database
record corresponding to the transfer
airport.

Airport code:
● malformed
● blank
● valid

Airport country:
● malformed
● blank
● invalid (not a country)
● valid

Minimum connection time:
● malformed
● blank
● invalid
● valid

31

32

Question 5

• Full set of test specifications = 144 tests
• Create a covering array covering all pairwise

combinations.

Allow
Content to
Load

Notify About
Pop-Ups

Allow Cookies Warn About
Add-Ons

Warn About
Attack Sites

Warn About
Forgeries

Allow Yes Allow Yes Yes Yes

Restrict No Restrict No No No

Block Block

33

Question 5

34

Question 6
Exploratory testing typically is guided by “tours”.
1. Describe one of the tours that we discussed in class.
2. Consider a banking website, where a user can do things like

check their account balance, transfer funds between
accounts, open new accounts, and edit their personal
information. Describe three actions you might take during
exploratory testing of this system, based on the tour you
described above.

35

Question 6
Describe one of the tours.
• Supermodel Tour

• Tests the GUI, not the functional correctness.
• Visual appearance - are graphical elements in correct

locations, correct size, free of rendering errors.
• Are graphical elements/colors/fonts consistent?
• How long does it take elements to appear?
• Are there typos?
• Usability issues (could this be easier to use?)

36

Question 6
Describe three actions you might take during
exploratory testing of banking system
1. Click on drop down menu - is it displayed quickly? all items

present? does menu cause issues when appearing over
other elements?

2. Select account - is all information displayed? is location of
info correct? is info easy to find?

3. Edit personal info - is existing info displayed? are edited
segments updated and displayed correctly?

Question 7
You are testing the following method:

public double max(double a, double b);

Devise four executable test cases for this method in
the JUnit notation.

37

@Test

 public void aLarger() {

 double a = 16.0;

 double b = 10.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertTrue(“a should be larger”, actual>b);

 assertEquals(“should be 16”, expected, actual);

 }

@Test

 public void bLarger() {

 double a = 10.0;

 double b = 16.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertThat(“b should be larger”, actual>a);

 assertEquals(expected, actual);

 }

@Test

 public void bothEqual() {

 double a = 16.0;

 double b = 16.0;

 double expected = 16.0;

 double actual = max(a,b);

 assertEquals(“should be 16”, expected, actual);

 }

@Test

 public void bothNegative() {

 double a = -2.0;

 double b = -1.0;

 double expected = -1.0;

 double actual = max(a,b);

 assertTrue(“should be negative”,actual<0);

 assertEquals(“should be -1”, expected, actual);

 }

38

A is larger than B

B is larger than A

A == B

Tests negative
values

39

Let’s Take a Break

Question 8
After carefully and thoroughly developing a collection of
requirements-based tests and running your test suite, you
determine that you have achieved only 60% statement
coverage. You are surprised (and saddened), since you
had done a very thorough job developing the
requirements-based tests and you expected the result to be
closer to 100%.

40

Question 8
Briefly describe two (2) things that might have happened to
account for the fact that 40% of the code was not exercised
during the requirements-based tests.

● Few tests or poor job choosing test cases.
● Missing requirements.
● Dead or inactive code.
● Error-handling.

○ Code used only in special cases.
41

Question 8
Should you, in general, be able to expect 100% statement
coverage through thorough requirements-based testing
alone (why or why not)?

● No.
● There are almost always special cases not covered by

requirements.
○ Code optimizations, debug code, exception

handling.
42

Question 8
Some structural criteria, such as MC/DC, prescribe
obligations that are impossible to satisfy. What are two
reasons why a test obligation may be impossible to satisfy?

● Impossible combination of conditions
● Defensive programming (situations that may not

happen in practice are planned for).
● Other situations that result in unused code (i.e., code

implemented for future use that is not currently
reachable).

43

Question 9
• Draw the control-flow graph

for this method.
• Develop test input that will

provide statement coverage.
• Develop test input that will

provide branch coverage.
• Develop test input that will

provide path coverage.

int findMax(int a, int b, int c) {
int temp;
if (a>b)

temp=a;
else

temp=b;
if (c>temp)

temp = c;
return temp;

}

44

Question 9
1. int findMax(int a, int b, int c) {
2. int temp;
3. if (a>b)
4. temp=a;
5. else
6. temp=b;
7. if (c>temp)
8. temp = c;
9. return temp;
10. }

2

3

6

4T

F

8

7

9

T F

Statement:
(3,2,4), (2,3,4)
Branch:
(3,2,4), (3,4,1)

Path:
(4,2,5), (4,2,1), (2,3,4),
(2,3,1)

45

Question 9
• Modify the program to

introduce a fault such that
even path coverage could
miss the fault.

int findMax(int a, int b, int c)
{

int temp;
if (a>b)

temp=a;
else

temp=b;
if (c>temp)

temp = c;
return temp;

}

Use (a >b+1) instead of (a>b) and
the test input from the last slide:
(4,2,5), (4,2,1), (2,3,4), (2,3,1)
will not reveal the fault.

46

Question 10
• Identify all DU pairs

and write test cases
to achieve All DU Pair
Coverage.
• Hint - remember that

there is a loop.

1. public int inflections(int[] a, int n) {

2. int v = 0; // number of inflections

3. int d = 0; // current run direction (+/-)

4. while (n > 1) {

5. n = n - 1;

6. if ((d * (a[n]-a[n-1])) < 0) // direction

change

7. v = v + 1; // => inflection point

8. if (a[n] != a[n-1])

9. d = a[n] - a[n-1]; // record

direction

10. }

11. return v;

12. }

47

Question 10
1. public int inflections(int[] a, int n) {

2. int v = 0; // number of inflections

3. int d = 0; // current run direction (+/-)

4. while (n > 1) {

5. n = n - 1;

6. if ((d * (a[n]-a[n-1])) < 0) // direction

change

7. v = v + 1; // => inflection point

8. if (a[n] != a[n-1])

9. d = a[n] - a[n-1]; // record

direction

10. }

11. return v;

12. }

48

Variable DU Pairs

a (1, 6), (1, 8), (1,9)

n (1, 4), (1, 5), (5, 6), (5, 8), (5, 9), (5, 4), (5, 5)

v (2, 7), (2, 11), (7, 7), (7, 11)

d (3, 6), (9, 6)

Question 10
1. public int inflections(int[] a, int n) {

2. int v = 0; // number of inflections

3. int d = 0; // current run direction (+/-)

4. while (n > 1) {

5. n = n - 1;

6. if ((d * (a[n]-a[n-1])) < 0) // direction

change

7. v = v + 1; // => inflection point

8. if (a[n] != a[n-1])

9. d = a[n] - a[n-1]; // record

direction

10. }

11. return v;

12. }

49

Input Additional DU Pairs Covered

[1,2,3], 3 a: (1, 6), (1, 8), (1, 9)
n: (1, 4), (1, 5), (5, 6), (5, 8), (5, 9), (5, 4), (5, 5)
v: (2, 11)
d: (3, 6), (9, 6)

[2,1,3], 3 v: (2, 7), (7, 11) (requires at least one inflection
point)

[2, 1, 2, 1, 2], 5 v: (7, 7) (requires at least two inflection points)

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

50

1. Create an equivalent
mutant.

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

51

1. Create an equivalent
mutant.

} else if (value > A[mid]) {
return bSearch(A, value,

mid+1, end);
} else {
}
return mid;

}

SES - End Block Shift

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

52

2. Create an invalid
mutant.

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

53

2. Create an invalid
mutant.
mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start,
mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1,
end);
} else {

return mid;
}

}

SDL - Statement Deletion

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

54

3. Create a
valid-but-not-useful
mutant.

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

55

3. Create a
valid-but-not-useful
mutant.

bSearch(A, value, start, end) {
if (end > start)

return -1;
mid = (start + end) / 2;

ROR - Relational Operator
Replacement

Question 11
Consider the following function:
void bSearch(int[] A, int value, int start, int end) {

if (end <= start)
return -1;

mid = (start + end) / 2;
if (A[mid] > value) {

return bSearch(A, value, start, mid);
} else if (value > A[mid]) {

return bSearch(A, value, mid+1, end);
} else {

return mid;
}

}

56

3. Create a useful mutant.

} else if (value > A[mid]) {
return bSearch(A, value,

mid+2, end);
} else {

return mid;
}

}

CRP - Constant for Constant
Replacement

57

Question 12
Metaheuristic search techniques can be divided into
local and global search techniques.
1. Define what a “local” search and a “global” search is.
2. Contrast the two approaches. What are the strengths

and weaknesses of each?
3. Choose one search algorithm and briefly explain how

it works. State whether it is a global or local search,
and explain why it belongs to that category.

58

Question 12
Define “local” search and “global” search.
• Local: Usually one solution at a time, improvement

via small changes (“local neighborhood”)
• Global: Multiple solutions in parallel. Sample from

whole search space.

59

Question 12
Contrast the two approaches. What are the
strengths and weaknesses of each?
• Local: Fast, easy to implement, easy to understand.

• Depends on initial guess.

• Global: Slower, harder to implement and
understand. No issues with getting “stuck”.

60

Question 12
● Simulated Annealing
● Choose a neighboring test case.

○ If better, select it. If not, select it
at probability:
prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

○ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

● Initially, large jumps around search space.
○ Stabilizes over time.

Question 13
Suppose that finite state verification of an abstract
model of some software exposes a counter-example to
a property that is expected to hold for true for the
system.

Briefly describe what follow-up actions would you take
and why?

61

Question 13
Tells us one of the following is an issue:
• The model

• Fault in the model, bad assumptions, incorrect
interpretation of requirements

• The property
• Property not formulated correctly.

• The requirements
• Contradictory or incorrect requirements.

62

Question 14
Temporal Operators:

● G p: p holds globally at every state on the path from now until the end
● F p: p holds at some future state on the path (but not all future states)
● X p: p holds at the next state on the path
● p U q: q holds at some state on the path and p holds at every state

before the first state at which q holds.
● A: for all paths reaching out from a state, used in CTL as a modifier for

the above properties (i.e., AG p)
● E: for one or more paths reaching out from a state (but not all), used in

CTL as a modifier for the above properties (i.e., EG p)

63

Question 14
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

64

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Formulate a safety
property in CTL.

AG (pedestrian_light =
walk -> traffic_light !=
green)

Question 14
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

65

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Formulate a
liveness property
in LTL.

G (traffic_light = RED &
button = RESET -> F
(traffic_light = green))

Question 14
Traffic-light controller, with a pedestrian
crossing and a button to request right-of-way
to cross the road.

State variables:
● traffic_light: {RED, YELLOW, GREEN}
● pedestrian_light: {WAIT, WALK,

FLASH}
● button: {RESET, SET}

Initially: traffic_light = RED,
pedestrian_light = WAIT, button = RESET

66

Transitions:
pedestrian_light:

● WAIT → WALK if traffic_light = RED
● WAIT → WAIT otherwise
● WALK → {WALK, FLASH}
● FLASH → {FLASH, WAIT}

traffic_light:
● RED → GREEN if button = RESET
● RED → RED otherwise
● GREEN → {GREEN, YELLOW} if button = SET
● GREEN → GREEN otherwise
● YELLOW→ {YELLOW, RED}

button:
● SET → RESET if pedestrian_light = WALK
● SET → SET otherwise
● RESET → {RESET, SET} if traffic_light = GREEN
● RESET → RESET otherwise

Write a trap-property that can be
used to derive a test case to
exercise the scenario
“pedestrian obtains right-of-way
to cross the road after pressing
the button”.

Property in temporal logic:
G (button = SET -> F
(pedestrian_light = WALK))

Negate to get trap property:
G !(button = SET -> F
(pedestrian_light = WALK))

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

67

In CTL:
● The microwave shall

never cook when the
door is open.

● AG (Door = Open ->
!Cooking)

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

68

In CTL:
● The microwave shall

cook only as long as
there is remaining cook
time.

● AG (Cooking ->
Timer > 0)

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

69

In CTL:
● If the stop button is

pressed when the
microwave is not
cooking, the remaining
cook time shall be
cleared.

● AG (Button = Stop &
!Cooking ->
AX (Timer = 0))

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

70

In LTL:
● It shall never be the

case that the microwave
can continue cooking
indefinitely.

● G (Cooking ->
F (!Cooking))

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

71

In LTL:
● The only way to initiate

cooking shall be
pressing the start button
when the door is closed
and the remaining cook
time is not zero.

● G (!Cooking U
((Button = Start &
Door = Closed)
& (Timer > 0)))

Question 15
Microwave controller
● Door: {Open, Closed} -- sensor

input indicating state of the door
● Button: {None, Start, Stop} --

button press
● Timer: 0...999 -- (remaining)

seconds to cook
● Cooking: Boolean -- state of the

heating element

72

In LTL:
● The microwave shall continue

cooking when there is
remaining cook time unless
the stop button is pressed or
the door is opened.

● G ((Cooking & Timer > 0) ->
X (((Cooking |
(!Cooking & Button = Stop)) |
(!Cooking & Door = Open)))

Any other questions?

Thank you for being a
great class!

