
Lecture 6: System Testing -
Test Selection Techniques

Gregory Gay
DIT635 - February 4, 2022

Creating System-Level Tests
Identify an Independently

Testable Function

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify a function that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of the function.

Identify types of values for each choice
that lead to different function outcomes.

Combine values to form “recipes”
for test cases.

Replace
representative

values with
concrete values.

2

3

Test Specifications
• May end up with thousands

of test specifications.
• Which do you turn into

concrete test cases?
• Identify the important

interactions.

4

Today’s Goals
• Understand how interactions can create faults.
• Examine how to select system tests to increase

likelihood of detecting interaction faults.
• Category-Partition Method
• Combinatorial Interaction Testing

5

Internal Interaction
• Low-level functions are

expected to interact.
• Usually this is planned!
• Sometimes unplanned

interactions break the system.
• We want to select tests that

thoroughly test interactions.

6

Triggering Interactions
• Interactions result from

combining values of individual
choices.
• Inadvertent interactions cause

unexpected behavior
• (ex. incorrect output, timing)

• Want to detect, manage,
resolve inadvertent
interactions.

7

Fire and Flood Control
• FireControl activates

sprinklers when fire
detected.

• FloodControl cuts water
supply when water
detected on floor.

• Interaction means
building burns down.

8

WordPress Plug-Ins
• Weather and

emoji plug-ins
tested
independently.

• Their interaction
results in
unexpected
behavior.

9

Feature Interactions

10

Selecting Test Specifications
• We want to select interesting specifications.
• Category-Partition Method

• Apply constraints to reduce the number of specifications.

• Combinatorial Interaction Testing
• Identify a subset that covers all interactions between

pairs of choices.

11

Category-Partition Method

Category-Partition Method
Creates a set of test specifications.
• Choices, representative values, and constraints.

• Choices: What you can control when testing.
• Representative Values: Logical options for each choice.
• Constraints: Limit certain combinations of values.

• Apply more constraints to further limit set.

12

Identify Choices

• Examine parameters of function.
• Direct input, environmental parameters (i.e., databases),

and configuration options.
• Identify characteristics of each parameter.

• What aspects influence outcome? (the choices)
• Choices are also called categories if you look up

category-partition method.

13

Example: Computer Configurations
• Web shop that sells custom computers.
• A configuration is a set of options for a model.

• Some combinations are invalid (i.e., display port monitor
with HDMI video output).

• Function: checkConfiguration(model,configuration)
• What are the parameters?
• What are the choices to be made for each parameter?

14

Example: Computer Configuration
• Model: Identifies a product and determines constraints on available

components. Identified by a model number. Characterized by a set of
slots. Slots may be required (must be filled) or optional (may be left
empty).

• Configuration: Set of <slot, component> pairs. Must correspond to
the required and optional slots of the model. Available components and
a default for each slot are determined by the model. Slots may be
empty (may be default for optional slots). Components can be
compatible or incompatible with a model or with each other.

15

Example: Configuration Choices
• Parameter: Model

• Model number
• Number of required slots (must have a component)
• Number of optional slots (component or empty)

• Parameter: Configuration
• Selected configuration valid for model?
• Number [required/optional] slots with non-empty selections.
• Selected components for [required/optional] slots OK?

• Parameter: Product Database
• Number of models in database
• Number of components in database

16

Identify Representative Values
• Many values can be selected for each choice.
• Partition each choice into types of values.

• Consider all outcomes of function.
• Consider logical ranges or groupings.

• A test specification is a selection of values for
all choices.

• Concrete test case fills values for each abstract
selection.

17

Values for Each Choice
Parameter: Model

• Choice: Model number
• malformed
• not in database
• valid

• Choice: Number of required slots
• 0
• 1
• many

• Choice: Number of optional slots
• 0
• 1
• many

Parameter: Configuration

● Choice: Configuration Matches Model
○ complete correspondence
○ omitted slots in configuration
○ extra slots in configuration
○ mismatched number of required and optional slots

● Choice: Number of empty required slots that are empty
○ all required slots filled
○ some required slots empty
○ all required slots empty

● Choice: Number of optional slots that are empty
○ all optional slots filled
○ some optional slots empty
○ all optional slots empty

● Choice: Selected components for required slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

● Choice: Selected components for optional slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

18

Parameter: Product Database

• Choice: Number of models in database
• 0
• 1
• many

• Number of components in database
• 0
• 1
• many

Generate Test Case Specifications
• Test specification = selection of

values for choices.
• Constraints limit number of

specifications.
• Eliminate impossible pairings.
• Remove unnecessary options.
• Choose a subset to turn into

concrete tests.

19

1944 tests (all
combinations)

678 Tests

40 Tests!

Values for Each Choice
Parameter: Model

• Choice: Model number
• malformed
• not in database
• valid

• Choice: Number of required slots
• 0
• 1
• many

• Choice: Number of optional slots
• 0
• 1
• many

Parameter: Configuration

● Choice: Configuration Matches Model
○ complete correspondence
○ omitted slots in configuration
○ extra slots in configuration
○ mismatched number of required and optional slots

● Choice: Number of empty required slots that are empty
○ all required slots filled
○ some required slots empty
○ all required slots empty

● Choice: Number of optional slots that are empty
○ all optional slots filled
○ some optional slots empty
○ all optional slots empty

● Choice: Selected components for required slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

● Choice: Selected components for optional slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

20

Parameter: Product Database

• Choice: Number of models in database
• 0
• 1
• many

• Number of components in database
• 0
• 1
• many

● Seven choices with three values, one with four values, two with five values.
○ 37 x 52 x 4 = 218700 test specifications

● Not all combinations correspond to reasonable specifications.

Constraints Between Values
• IF-CONSTRAINT

• This value only needs to be used under certain conditions
(if X is true, use value Y)

• ERROR
• Value causes error regardless of values of other choices.

• SINGLE
• Only a single test with this value is needed.
• Corner cases that should give “good” outcome.

21

Example - Substring
substr(string str, int index)
Choice: Str length Choice: index
length = 0 value < 0
length = 1 value = 0
length >= 2 value = 1
Choice: Str contents value > 1
contains letters and numbers
contains special characters
empty

property zeroLen, TRUE if length = 0

if !zeroLen

ERROR

if !zeroLen

22

if zeroLen

SINGLE

Parameter: Product Database

• Choice: Number of models in database
• 0 [error]
• 1 [single]
• many

• Number of components in database
• 0 [error]
• 1 [single]
• many

Parameter: Configuration

● Choice: Configuration Matches Model
○ complete correspondence
○ omitted slots in configuration [error]
○ extra slots in configuration [error]
○ mismatched number of required and optional slots [error]

● Choice: Number of empty required slots that are empty
○ all required slots filled
○ some required slots empty [if RSMANY]
○ all required slots empty

● Choice: Number of optional slots that are empty
○ all optional slots filled
○ some optional slots empty [if OSMANY]
○ all optional slots empty

● Choice: Selected components for required slots
○ all valid
○ some kept at default [single]
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database [error]

● Choice: Selected components for optional slots
○ all valid
○ some kept at default [single]
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database [error]

Parameter: Model

• Choice: Model number
• malformed [error]
• not in database
• valid

• Choice: Number of required slots
• 0 [single]
• 1
• many [property RSMANY]

• Choice: Number of optional slots
• 0 [single]
• 1
• many [property OSMANY]

Example - Configuration Constraints

23

218700 test specifications(after error): 8 (error cases) + (11*23*34*42) = 10376(after error + single): 8 (error cases) + 6 (single cases) + (13*23*34) = 6628 (error cases) + 6 (single cases) + (17*21*32) (RSMANY = true/OSMANY = true) + (15*23*32) (false/true)
+ (15*23*32) (true/false) + (13*25*32) (false/false) = 464 test specifications

Activity - find service
find(pattern,file)

• Finds instances of a pattern in a file
• find(“john”,myFile)

• Finds all instances of john in the file
• find(“john smith”,myFile)

• Finds all instances of john smith in the file
• find(““john” smith”,myFile)

• Finds all instances of “john” smith in the file

24

https://bit.ly/3ggnSge

https://bit.ly/3ggnSge

Activity - find Service
• Parameters: pattern, file
• What can we vary for each?

• What can we control about the pattern? Or the file?
• What values can we choose for each choice?

• File name:
• File exists with that name
• File does not exist with that name

• What constraints can we apply between choice
values? (if, single, error)

25

https://bit.ly/3ggnSge

https://bit.ly/3ggnSge

Example - find Service
• Pattern size:

• Empty
• single character
• many characters
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

26

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on any single line line:
○ One
○ more than one

(22*33*41) = 108 test specifications

ERROR and SINGLE Constraints

27

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

27

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (12*23*31) = 30
[error]

IF Constraints

28

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

28

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (13*23) (quoted = true) +
(14*22) (quoted = false) = 18[error]

[property quoted]

[if quoted]
[if quoted]

29

Let’s take a break.

30

Combinatorial Interaction Testing

31

Limiting Num. of Test Specifications
• Full set = 432 specifications
• No natural IF, SINGLE,

ERROR constraints for
these features.

• What is important to cover?

Bandwidth Mode Language Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Advertising Screen Size

No Advertising Phone

Targeted
Advertising

Tablet

General Advertising Full Size

Minimal Advertising

32

Combinatorial Interaction Testing
• Cover all k-way interactions (k < N).

• Typically 2-way (pairwise) or 3-way.

• Set of all combinations grows exponentially.
• Set of pairwise combinations grows logarithmically.

• (last slide) 432 combinations.
• Possible to cover all pairs in 16 tests.

33

Example - Paragraph Effects

2 * 2 * 3 = 12
combinations

34

Example - Paragraph Effects

35

Example - Paragraph Effects
• Goal of CIT is to produce

covering array.
• Set of configurations that

covers all K-way
combinations.

• (2-way here).
• Cover in 6 test specifications.

36

Example - Website Display
Bandwidth Mode

Desktop Site

Mobile Site

Text Only

Fonts

Standard

Open-Source

Minimal

Screen Size

Phone

Tablet

Full Size

Bandwidth Mode Fonts

Desktop Site Standard

Desktop Site Open-Source

Desktop Site Minimal

Mobile Site Standard

Mobile Site Open-Source

Mobile Site Minimal

Text Only Standard

Text Only Open-Source

Text Only Minimal

• Cover all combinations
for two variables.

• Add a third, account for
all combinations of
pairs of values.

• Each test specification
can cover up to three
pairs.

Screen Size

Phone

Tablet

Full Size

Tablet

Full Size

Phone

Full Size

Phone

Tablet

37

Example - Website Display
Bandwidth Mode Language Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Advertising Screen Size

No Advertising Phone

Targeted Advertising Tablet

General Advertising Full Size

Minimal Advertising

Language Advertising

English No Advertising

English Targeted Advertising

English General Advertising

English Minimal Advertising

French No Advertising

French Targeted Advertising

French General Advertising

French Minimal Advertising

German No Advertising

German Targeted Advertising

German General Advertising

German Minimal Advertising

Swedish No Advertising

Swedish Targeted Advertising

Swedish General Advertising

Swedish Minimal Advertising

Bandwidth Mode

Desktop Site

Mobile Site

Text Only

-

-

Desktop Site

Mobile Site

Text Only

Text Only

-

Desktop Site

Mobile Site

Mobile Site

Text Only

-

Desktop Site

Fonts

Standard

Open-Source

Minimal

Minimal

-

Minimal

Standard

Open-Source

Minimal

-

Open-Source

Standard

Open-Source

Standard

-

Minimal

Mobile Site

Screen Size

Phone

Tablet

Full Size

Phone

-

Full Size

Tablet

Phone

Tablet

-

Phone

Full Size

Full Size

Phone

-

Tablet

38

Constraints
• Remove all ERROR/SINGLE cases before CIT.

• Error output, one-time corner cases

• Constraints on value combinations specified:
• OMIT(Text-Only, *, *, Full Size, *)
• OMIT(*, *, *, Full Size, Minimal)

• Further reduces number of test specifications.

39

CIT Tools
• Pairwise Independent Combinatorial Testing

(Microsoft): https://github.com/microsoft/pict
• Automated Combinatorial Testing for Software

(NIST):
https://csrc.nist.gov/projects/automated-combinatori
al-testing-for-software

• .. Many more: http://www.pairwise.org/tools.asp

https://github.com/microsoft/pict
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
http://www.pairwise.org/tools.asp

40

Activity - Browser Configuration

• Full set of test specifications = 144
• Create set covering all pairwise value

combinations.
• Hint: Start with two variables with most values. Add one

variable at a time.

Allow
Content to
Load

Notify About
Pop-Ups

Allow Cookies Warn About
Add-Ons

Warn About
Attack Sites

Warn About
Forgeries

Allow Yes Allow Yes Yes Yes

Restrict No Restrict No No No

Block Block

https://bit.ly/3ugBXmh

https://bit.ly/3ugBXmh

41

Activity Solution
Allow Content Allow Cookies

Allow Allow

Allow Restrict

Allow Block

Restrict Allow

Restrict Restrict

Restrict Block

Block Allow

Block Restrict

Block Block

Pop-Ups

Yes

No

-

-

Yes

No

No

-

Yes

Add-Ons

Yes

No

-

No

-

Yes

-

Yes

No

Attacks

Yes

Yes

No

No

-

Yes

-

No

Yes

Forgeries

Yes

No

Yes

No

Yes

No

Yes

-

No

No No

Yes

We Have Learned
• Process for deriving system-level tests often results

in too many test specifications.
• Two methods that identify important interactions:

• Category-Partition Method: Use constraints to eliminate
unnecessary tests.

• Combinatorial Interaction Testing: Identify important
pairs of input values.

42

Next Time
• Exercise Session Today:

• More practice in system-level testing.

• Next Wednesday:
• Exploratory Testing

• Assignment 1 - Feb 13
• All topics now covered.
• Any questions?

43

